
Totally Different Structural Programming
Programming Languages in ZigZag∗

Antti-Juhani Kaijanaho† Benjamin Fallenstein‡

August 14, 2001

Abstract

The ZigZag structure and the ZigZag way of thought provide a
medium for writing computer programs that is fairly different from
the usual textual approach. It is similar but not identical to visual pro-
gramming, but instead of using images or text to specify the program,
we do it in a pure structure — the ZigZag structure, and thus elimi-
nate a mandatory indirection. This allows the programmer to choose
his or her own representation of the structure, whichever suits him
or her best. There are several programming languages in ZigZag in
the design and prototyping stages, including the zaubertrank, several
Greek Clangs and Clasm. These languages, design issues relating to
them and future prospects will be discussed.

1 Introduction: Nontextual programming

Traditional programming languages represent programs primarily as text,
which is then transformed at compile time into an in-core structure that
represents the true nature of the program (the “parse tree”). If a program-
mer wants to use a different interface to the structure of the program, she
must use a custom-built preprocessor.

There have been attempts at freeing the programmer from this prison of
text representation. The visual programming languages (Prograph1 et al.,
not to be confused with Microsoft’s Visual product series) represent pro-
grams primarily as diagrams or by using other graphical means. Still, the
programmer is confined into the language designer’s representation of the

∗An invited talk presented at the First International ZigZag Conference, part of ACM
Hypertext Conference 2001 in Århus, Denmark on August 14, 2001.

†University of Jyväskylä, Department of Mathematical Information Technology
‡University of Bielefeld, Oberstufen-Kolleg
1http://www.pictorius.com/prograph.html

1



program, and indeed, visual languages do worse than textual languages in
being comprehensible when things get complicated.

The ZigZag paradigm provides a uniform metastructure on which one
can represent all kinds of structures. We can thus encode the program struc-
ture inside a ZigZag structure. This would at first seem to have the same
problem as the textual and visual approaches - that the programmer will be
constrained to the model chosen by us, the language designers. However,
here comes the unique quality of the ZigZag system into play: the system
totally decouples views from the structure, so even though there are views
that show the structure rather plainly, it is possible to create views that are
very different from the conventional visualizations of a ZigZag structure.
The second GZigZag implementation (nicknamed “Java” because of the di-
rectory name in the code repository) includes a good example of this: the
virtualcommunity module, which is unrelated to programming, though.

When the canonical representation of the program is a ZigZag structure
instead of a particular textual or visual renderition of it, the programmer
can potentially choose from lots of different frontend representations of the
same program, depending on her preferences. The choices would range
from traditional textual representations to a visual representation to some-
thing quite different.

Of course, ZigZag is not the only possible medium for representing pro-
grams as structure. We know of at least one language (Flare2) that rep-
resents the program as an XML document, which also allows decoupling
the structure from the presentation. We would not be surprised to find
other attempts to do “programming in structure.” (We would like to call
it “structural programming”, but that is too close to the name of a popular
programming style.)

In the rest of this presentation, we first discuss the various issues in
designing a language for programming in the ZigZag structure and then
present some existing designs for ZigZag languages (of which most are
implemented). Finally, we describe a specific code view, the zaubertrank.

2 To syntax or not to syntax

A question that comes into mind when discussing languages for program-
ming in structure is whether these languages have syntax. One would think
that they don’t — we don’t need to parse the structure like a textual pro-
gram to find the parse tree, since we start at the structure. However, this is
actually looking at the wrong end of it.

Syntax is not about parsing, although it does help in writing the parser.
Syntax is about deciding which things are valid programs and which are
not. Very few of the structural languages allow any kind of a structure to

2http://flarelang.sourceforge.net/

2



be a program, so there is a syntax. It is the declaration of valid ways of con-
structing a program, and it is closely related to the design of the language’s
semantics.

An example of a syntax possibility is using the parse tree model: a mul-
tiway tree consisting of operators at internal nodes and their parameters in
the subnodes. This can be represented in a ZigZag structure using the stan-
dard multiway tree to binary tree mapping: siblings are connected on one
rank, and their parent node is connected to the headcell of that rank along
another dimension. In the ”Java” version of GZigZag, there is a view for
showing this tree structure like it’s customarily shown in computer science
texts.

Another possibility is to use postfix notation: put everything on one
rank, with operands first and operations after the operands. This is similar
to the syntax of the textual languages Forth and Postscript (among others).
Or one could use prefix notation in the style of LISP, which is also, in a
sense, a language for programming in structure. This seems to us like a
fairly natural syntax for a ZigZag language, but one will need to figure
out a way to represent sublists. One possibility for doing that would be
defining a certain cell as representing the sublist within the list that contains
it. That cell would then be connected to the sublist itself.

This leads into the matter of the so-called identity cells. These cells
are representatives of larger substructures which get used (via a ZigZag
connection) in other structures. Conventionally, every unit of a language,
such as a procedure, would be represented by a certain identity cell. Now,
when the ID cell is included in another substructure, the effect is that of
including the whole substructure of the ID cell in the other substructure.

3 Name it — or not?

One problem every textual language needs to solve is the problem of nam-
ing. In a large program written by several people and containing stuff
written by people who do not communicate with each other, it is too hard
to make sure names do not clash. Thus languages have mechanisms for
controlling name space: hierarchical naming of modules with a language-
level convention for the use of the naming system, namespace boundaries
(scope) and name shadowing.

This problem does not exist in languages for programming in structure,
since things are identified, not by names, but by identities of the structure
members (in ZigZag, cells). This makes every ”name” unique throughout
the world - assuming the cells itself have global identity, as cells in the third
implementation of GZigZag (nicknamed “chartreuse”) do.

Thus, names are not needed for referring to things in ZigZag-based lan-
guages. However, they can be used as documentation: human program-

3



mers do need a way to tell things apart. Thus, ZigZag-based=20 languages
normally do allow people to name things. But the names do not matter to
the language, so there is no need to handle name collisions in the language
level.

4 What are we writing for?

Is the language for scripting ZigZag and writing applitudes, or should one
be able to write conventional programs in it? This is a decision that has
to be made when considering the design goals of a language, because it
affects the fundamental assumptions that the language makes about the
operating environment. For example, a traditional hosted environment for
a medium-level language requires data types for numbers, pointers, char-
acters and certain conventional data abstraction tools, whereas a ZigZag
scripting environment can do with cells, cursors and media types. Also
the choice affects the design of the language’s runtime system: a ZigZag
scripting language will want to provide a version of the runtime environ-
ment that stores all state (including procedure activation records) in the
ZigZag space.

Currently all of the ZigZag-based languages have been designed with
scripting in mind. Several have a design that emphasizes the all-state-in-
structure approach, and one of them has this implemented.

5 Thales Clang

Thales Clang was one of the first ZigZag-based languages to have been de-
signed. It was supposed to be the first in a series of experimental languages
(“clangs” for “cellular languages”) named after ancient Greek philosophers.
It has never been fully implemented.

The striking feature of Thales Clang is its use of a “sequence dimen-
sion”. It is the backbone of Thales Clang syntax: it is used to write proce-
dure bodies and also for doing subexpressions. In Thales Clang, everything
is an expression and thus can be evaluated to a value. All expressions on
one rank along the sequence dimension are evaluated in order. The rank
itself forms another expression, whose value is the value of the last expres-
sion on the rank.

Subexpressions in for example procedure argument evaluation are formed
by having the argument consist of a no-operation cell which is the headcell
of a two-cell rank along the sequence dimension. The actual subexpression
will be at the end of the rank.

4



6 Flowing Clang

Flowing Clang was the first ZigZag scripting language in which actual key-
bindings have been implemented. Due to GZigZag’s missing groupwork
capabilities at the time, though, these keybindings have never been really
used. Flowing Clang was also the first ZigZag language implementation
featuring a debugger showing the whole operation of a program inside the
ZigZag structure, providing the ability to walk through the program step-
by-step. In Flowing Clang, functions with multiple parameters and return
values are composed in an assembler-like control structure using sequen-
tial execution on a rank plus conditional branching.

The reason for Flowing Clang’s name was that viewing the code on the
parameter and clone dimensions, one could easily see how the values of
variables would be set by one function and read by another, thus showing
a structure similar to that of a dataflow language (although the semantics of
a dataflow language would not be followed; this was just a different view
for the very simple, assembler-like control flow structure).

7 Clasm

Clasm (“clang assembler”) is the native scripting language for the third
implementation of GZigZag (nicknamed “chartreuse”). It is already im-
plemented, and it will be used to implement some of the essential features
of the GZigZag client. Despite its name, it is a medium-level program-
ming language with scoped variables, subexpressions and functions with
parameters and return values.

A curious feature of Clasm is that it treats variables as callables: if you
call one with no arguments, you ”dereference” the variable to get its value,
and if you call one with a single argument, you assign the value of the argu-
ment to the variable. Clasm is dynamically typed, and almost everything
in the language — including variables — is first-class.

8 The zaubertrank

In contrast to the different designs described above, the zaubertrank3 is not
a ZigZag language, but a fancy view and editor usable with different lan-
guages. It shows trees of expressions as plain text, composing a text struc-
turally similar to that parsed by text-based languages; it is thus capable of
showing a program written in a ZigZag language in a way resembling a
text-based language. The main goal of the zaubertrank, though, is to do
this showing not computer code, but natural language.

3http://www.zaubertrank.org/

5



In this system, computer code is shown and edited as sentences which,
although formal in style, can be understood by people not familiar with
computer coding, thus taking the air of magic away from computer pro-
grams that currently makes even semantically trivial functionality unintel-
ligible to the average user.

No usable version of the zaubertrank has been implemented so far, but
several partial prototypes exist and work on them continues.

9 Conclusion

We have presented the idea of programming not in text, but in structure.
We have discussed some of the issues regarding the design of ZigZag-based
languages for programming in structure. We have presented some such de-
signs. The field of designing and implementing these languages is virtually
uncharted. We hope to have more experience real soon now. Please join us,
and share the software.

Acknowledgements

Thank you, we love you all.

6


