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ABSTRACT
As enabling technologies become available there is an in-
creasing use of temporal media streams, such as audio and
video, within a hypertext context. In this paper we present
the rationale and requirements for delivering continuous
metadata alongside the media stream, and focus on linking
as our case study. We consider the mechanism for delivery
of the metadata across a distributed system, the format and
content of the metadata flow itself, and the presentation of
the media and augmenting metadata to the user. Two initial
proof of concept applications have been developed to demon-
strate these concepts, which we describe. Finally we propose
a framework for highly distributed delivery and processing of
multicast continuous metadata, as a part of the infrastructure
necessary to provide a more complete multimedia environ-
ment for hypermedia systems.

KEYWORDS: metadata, streamed media, open hyperme-
dia, temporal linking

INTRODUCTION
As hypermedia systems have grown, they have developed
into rich multimedia environments incorporating many for-
mats other than text and still images into the user’s expe-
rience. Increasingly prevalent (and attractive to the user)
amongst these formats are streamed media such as audio
and video. Such streaming applications normally take one
of three forms: pre-stored media (presentational media-on-
demand); live broadcast media; and live interactive media
(video-conferencing). The transmission mechanism can be
one-to-one (unicast) or one-to-many (multicast).

How well can current solutions deliver such content? Adcock
et al. [Adc93] identify four resources required to support
distributed multimedia applications:

1. Explicit support for streamed (or temporal) media
2. The ability to specify and reserve a required Quality of

Service (QoS)
3. Synchronisation within and between multimedia ele-
ments
4. Presentation and communication to and between groups
of collaborating users

While no complete system or underlying network (mainly In-
ternet) infrastructure yet fully meets these criteria, the pieces
are beginning to fall into place: RTP [Sch96] and RTCP
[Sch98] enable transport and control of streamed media;
IPv6 [Dee98] brings promise of support for QoS architec-
tures (such as IntServ [Bra94] and DiffServ [Bla98b]); mul-
ticast routing will be expanded to encompass the entire In-
ternet (again, enabled by IPv6), facilitated by application-
level routing; the Amsterdam Hypermedia Model [Har94]
brings the notion of temporal presentation to hypertext sys-
tems; many of the ideas within it have become the basis for
current and future versions of SMIL [Bug98]; and the many
issues involved in synchronising communications have long
been an important area of research within the multimedia
community [Geo96].

In this paper we describe a further missing link—the process-
ing and delivery of metadata accompanying the streamed me-
dia. This metadata is intended to convey all types of informa-
tion relevant to the associated media, and in the next section
we present the case for distributing the metadata separately
from the media and on a continuous basis. We then describe
two ‘proof of concept’ systems in which the metadata takes
the form of links: firstly our experimental ‘Temporal Linking
Service’, and secondly a development of this built within an
agent environment and implementing FOHM [Mil00]. We
generalise this work to present a distributed framework for
continuous metadata, which is then extended to encompass
multicast. Finally we illustrate the application of continuous
metadata through a number of scenarios.

CONTINUOUS METADATA
Metadata facilitates the discovery, use and re-use of the vast
resources of information available via the Internet. Its sig-
nificance has been acknowledged in recent years through
activities such as the semantic Web, which is establishing
an infrastructure providing interoperability between applica-
tions exchanging machine-understandable information. Dig-
ital media is no exception, with a clear need for metadata
describing both multimedia documents and broadcasts.
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We can view a hyperstructure as metadata associated with a
set of documents, a relationship explored in [Grø00]. In the
multimedia context, we should expect to associate the hy-
perstructure with multimedia documents including streamed
temporal media [Bou99]. It is this latter case which is our
focus here, with the hyperstructure itself having a temporal
dimension; for example, a link might be valid only for a given
time interval in an audio stream.

By considering where we might use it, we can categorise the
metadata on two axes with regard to the associated temporal
media data: when it is transmitted, and how it is transmitted.

Stored multimedia data, such as an audio or video record-
ing, is a persistent entity which can be described by its as-
sociated metadata in exactly the same way as any document,
but with a temporal element. In a media-on-demand context,
the metadata might be used to assist in finding, delivering
and navigating the multimedia material; for example, the cre-
ation of movies by assembling video clips (‘sharable video’,
see [Pan00]) requires and creates metadata. The quantity of
meta-information is likely to be small in comparison to the
size of the original material. There may be little justifica-
tion for streaming the metadata, which can be processed in
advance of streaming the multimedia information, unless the
metadata must be streamed due to sheer volume of data.

With live media, the metadata describing the structure of
the content might not be available in advance, but instead
becomes available during the generation of the multimedia
stream (or streams). For example, this metadata could in-
clude information about camera positions, or decisions the
producer is making on-the-fly; live interactions might gen-
erate links [Pim00]. It could also result from real-time pro-
cessing of the stream, such as some form of classification,
segmentation or annotation. It is sometimes acceptable to in-
troduce a delay in such live media, which can give time for
a pipeline of intermediate processes. An analogous situation
can arise if the multimedia data takes a long time to present:
a first viewer of a presentation lasting several hours may pro-
vide useful annotations for a second viewer who accesses
the presentation before the first has completed authoring -
if metadata were preloaded at the start of the presentation the
second user would not benefit from the information provided
by the first (although the media stream is not live the meta-
data is). In both cases the metadata cannot be guaranteed to
be prepared in advance, and must be streamed at the same
time as the multimedia content. In some other situations the
streaming of pre-existing metadata could be necessitated by
the absence of any other form of metadata transport; for ex-
ample, a receive-only device joining a live radio or TV broad-
cast at an arbitrary point in time.

Live media that connects two or more parties in real-time,
such as video-conferencing, is the most demanding scenario.
Session and party metadata may be available in advance, but
content metadata is created on-the-fly and there is little op-

portunity for any pre-processing as there are tight time con-
straints on this style of synchronous interaction. By way of
example, the anchor generation system in OvalTine [Smi00]
was designed with video-conferencing in mind. Collabora-
tive virtual environments also impose real-time aspects, to-
gether with the prospect of a wealth of metadata associated
with the objects as well as the people.

The evolution of multimedia technologies and standards also
promotes the capture of metadata ‘upstream’ in the produc-
tion process; e.g. shots, script, storyboard. The MPEG stan-
dards are evolving (through MPEG-7 [Nac99]) to accommo-
date this, and associated metadata, within a combined data
stream. While there are advantages to transmitting and stor-
ing multimedia data with the metadata embedded in this way,
we believe there are also situations where metadata should be
handled separately and delivered synchronously.

A flow of metadata which is distinct from the multimedia
data flow not only follows the open hypermedia convention
of separation of links [Dav95] (where links are metadata
for a document), but also allows for a much more flexible
framework of distributed delivery, processing and presenta-
tion; metadata can originate and be used in different places
to the multimedia content, indeed they may reach the user
through different mediums. For instance, while an audio-
video stream might reach the user through a traditional tele-
vision broadcast (e.g. cable or satellite) the metadata may
arrive through an Internet connection.

In any of the above scenarios the multimedia data flow may
be unicast or multicast, and this also applies to the live meta-
data; however, it might not be the case that every party needs
to receive identical metadata flows, and metadata processing
nodes may not require the multimedia stream at all, thus a
separate metadata flow is preferable.

Although the metadata we refer to is streamed, it may be
better to think of it as continuous metadata. The word
‘stream’ has become closely associated with real-time audio
and video, and often (incorrectly) implies a non-stop flow of
relatively high bandwidth data. Continuous metadata need
not be high volume, and there may be significant lulls be-
tween bursts of data (although the transporting connection is
kept open); but the transmission timing of the metadata does
have significance, and it will normally be augmenting contin-
uous, streamed, media - henceforth known as ‘mediadata’.

In this paper it is not the type nor content of the metadata
that is important, rather that it is some kind of metadata and
that it is handled in a continuous manner. The classification
and exchange of metadata can already be described by stan-
dards such as RDF and MPEG-7; there is no reason why the
metadata ‘payload’ carried by continuous flows could not be
encoded using these standards.
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Figure 1: The TLS Client. Links from the semi-
nar video resolve to the presentation slides in this
simple scenario

THE TEMPORAL LINKING SERVICE

Our first experience of temporal linking (without streams)
was the Microcosm SoundViewer [Goo95], which was sub-
sequently extended to use RTSP in order to work with
streamed media. This was used in conjunction with a number
of other tools that were described in [DR98]. These tools,
which were designed for media-on-demand scenarios, used
time intervals in the temporal media stream as anchors; in-
tervals could also be used to identify fragments of content
from which features could be extracted for ’content-based
navigation’.

Building on this experience and to demonstrate the con-
cepts outlined in the previous section, the Temporal Linking
Service (TLS) was developed to deliver continuous linking
information (metadata) to hypermedia clients. Client and
server applications have been developed in Java using the
Java Media Framework (JMF) to stream the mediadata us-
ing RTP (a screenshot of the client is shown in figure 1).
While this enables provision of applet based clients, it also
limits the system to streaming formats supported by JMF.
TLS metadata takes the form of links relevant to the me-
dia which the client can resolve through its associated web
browser. The server retrieves the metadata from its ‘linkbase’
(i.e. link database) and uses XML markup to deliver it to
the client. We have designed our own HTTP-like protocol
to explore synchronisation issues between TLS servers and
clients.

On-time delivery of metadata from the client to the server is
preferred over delayed, but guaranteed, delivery. Our pro-
tocol must enable each component in the system to deter-
mine the local transmission deadline of each item of tem-
poral metadata; we anticipate situations in which late meta-
data should be dropped before entering the metadata stream
to increase the chances of other metadata reaching the client
within time.

Protocol
The Temporal Linking Service allows a connected client to
select a continuous metadata flow via some kind of descriptor
(i.e. URI), and to receive a ‘never-ending’ linkbase relevant
to that descriptor. In this paper, we do not describe how the
server arranges or discerns the linkbase, but the actual proto-
col between a TLS aware browser and the TLS server. The
Temporal Linking Transfer Protocol (TLTP) is derived from
HTTP/1.1, and sends commands via a TCP socket connec-
tion; the metadata flow is maintained for the duration of the
connection. A summary of commands is shown in table 1; a
more extensive description of the protocol operation can be
found in [Cru01].

The metadata payload (i.e. link data) is augmented with
timing constraints, so that the client browser can display
the links with temporal relevance. It was decided to use
XML to markup this data, which led to a number of possi-
bilities for delivering this data within the TLTP flow. For
longer and more complicated quantities of metadata (and
payload) it would seem sensible to use a succession of sep-
arate XML documents, which would also maintain docu-
ment form and integrity should the flow be broken midway
through. To maintain simplicity, however, we use multiple
elements within a single XML document (a technique also
used by SXML [Rog00]).

Delivery of a particular link is delayed up until a certain point
which is specified by the client via the BIAS command. Tem-
poral navigation (i.e. fast forward and rewind) within the me-
dia causes the client to issue successive BIAS commands to
maintain coherency between the browser and the TLS server.

Table 2 shows an example session transcript of a client re-
ceiving metadata about a seminar presentation.

In this implementation, we note that our TLS Client is able
to receive metadata flows in dynamic network environments
by analysing the lateness of each link as they it is received.
If no link has been received during certain period, the client
issues an STIME command to ensure synchronisation with
the server.

This initial TLS prototype stores metadata as simple uni-
directional links on the server. In the following section, we
describe an implementation where links are stored and com-
municated using the Fundamental Open Hypermedia Model.

FOHM IMPLEMENTATION
Our second prototype system was produced by mapping the
TLTP protocol onto the performatives of the Southampton
Framework for Agent Research [Mor00]. The SoFAR frame-
work supports the authoring of multi-agent systems for dis-
tributed environments, and is being used for research into
distributed multimedia information systems. The result, as
described in [Cru01], is that we define two agents, a service
agent and a client agent that represent the TLTP server and
client respectively. The service agent requests temporal link
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Command Description

HELLO The server responds with ”TLTP/1.0” to indicate that this server is capable of conversing the TLTP protocol.
BYE Invoking BYE tells the server to close the connection.
SELECT�
URI �

This command is used to select the media stream that the TLS server server delivers links about. The server
responds with YES or NO to tell the client if it knows of any metadata about the selected media stream.

STIME The STIME command requests that the server return the value of the server’s local clock. The result is used
by the client to determine a suitable value for the BIAS command.

BIAS
�
n � The BIAS command informs the server of the time difference between the server clock and the client clock.

ENABLE Tells the server to start metadata delivery of the temporal linkbase. It is important to note that the XML doc-
ument is not delivered immediately; rather each

�
tlink � element is delivered shortly before its deadline.

DISABLE Tells the server to stop metadata delivery. If an XML document is in the process of delivery, the document
is finished to ensure that well formed XML is produced.

Table 1: Summary of client to server TLTP commands

data from an agent that conforms to the Fundamental Open
Hypermedia Model [Mil00]. In this system, the TLS server
agent in effect becomes a client agent for a FOHM server
agent. Link data is inserted into the FOHM server agent’s
knowledge base, and is extracted in temporal order.

Temporal link information is stored within the FOHM model
by extending items within the knowledge base with time Loc-
Specs. The FOHM client agent receives links with their as-
sociated LocSpecs. In a non-live scenario, we can simply
perform a single query to the FOHM server agent, requesting
all link information about a particular media flow. The live
scenario, however, requires a more demanding conversation
between the two agents. The knowledge base of the FOHM
server agent is continuously expanded, thus the FOHM client
agent is required to periodically query for link data that lies
within a specified time range. In a finely tuned system, the
FOHM server delivers a block of link information just before
it is to be delivered as a continuous link flow to a TLS client.

The SoFAR framework performs a match-making service be-
tween agents: a FOHM client queries the SoFAR registry for
FOHM server agents. Thus when a FOHM server agent is
started within the SoFAR environment, it needs to register
its ability to serve FOHM linkbases with the SoFAR reg-
istry. During this process the server agent can restrict the
nodes within the network to which it will advertise services,
so limiting the possibility of overloading. The matching ser-
vice of SoFAR also allows an agent to specify the particular
media flow a server delivers. So a FOHM server would only
be matched with FOHM clients that asked for the advertised
media flow, allowing us to add extra agents dynamically for
a particular media flow when demand for that flow is high.

In contrast to the first TLS prototype, we note two features
gained from integrating the Temporal Linking Service with
FOHM and the SoFAR framework: firstly, the FOHM model
allows us to add a temporal dimension to existing FOHM
metadata by way of the LocSpec mechanism; secondly, the
match-making service of SoFAR gives the TLS client a ser-
vice discovery ability. In the first prototype the TLS client

needs to know exactly which metadata server to access, as it
requires the internet address and port number of the metadata
server. The SoFAR registry enables TLS Servers to advertise
their services, so that the TLS clients can ask the SoFAR
framework directly about media flows instead of servers.

A DISTRIBUTED FRAMEWORK FOR CONTINUOUS
METADATA
The Temporal Linking Service and FOHM implementation
demonstrate the usefulness of continuous metadata. In this
section we will develop these ideas within a more general
conceptual framework for the delivery of continuous meta-
data in a distributed environment (such as the Internet). The
greatest strength of the WWW as a hypertext system is its
highly distributed nature; we see a framework such as this
as a first step to providing a corresponding architecture for
multimedia data and associated metadata.

Mediadata and Metadata
As with the TLS, the framework will deal with mediadata and
metadata, where a separate and distinct continuous metadata
flow carries additional data about a corresponding mediadata
flow. Although the framework caters for a more general sce-
nario, we would normally expect the mediadata to take the
form of a multimedia stream, such as audio or video, which
can be characterised as a continually evolving flow of data—
one frame of a video generally has a direct relationship with
the previous. Metadata, on the other hand, will be split into
discrete chunks of information within the continuous meta-
data flow.

It can be argued that what may be metadata in one case
should be mediadata in another, and in many ways this is
true. While a flow of MIDI information would be metadata
for a raw audio mediadata flow in one case, in another there
may be no audio stream and the MIDI might form a medi-
adata flow augmented by other metadata. The framework
should be flexible enough to support both these cases, but
clarification is required. Since we are working in a highly
temporal system, we define the mediadata flow to be the one
against which the timing of metadata flows are made; and in
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Client Command Server Response

HELLO TLTP/1.0

SELECT YES

http://example.com/data/

events/20001023-1.mpg

STIME

BIAS -961755418994

ENABLE � ?xml version="1.0" encoding="UTF-8"? �

� !DOCTYPE TLINKBASE SYSTEM "tlinkbase.dtd" �

� TLINKBASE �

� TLINK START="0" END="297" LABEL="Xanadu, Zigzag and Zepler"

FROM="http://example.com/data/events/20001023-1.mpg"

TO="http://example.com/data/slides/zigzag/sld001.htm"/ �

� TLINK START="297" END="356" LABEL="Ted Nelson"

FROM="http://example.com/data/events/20001023-1.mpg"/ �

TO="http://example.com/data/slides/zigzag/sld002.htm"/ �

� /TLINKBASE �

DISABLE

BYE

Table 2: Example TLTP transcript

most cases it is desirable to designate the mediadata flow as
that which carries the high volume multimedia information
(since it will have the greatest amount of associated meta-
data).

We should also note that just because a metadata flow may
develop a derivative metadata flow “about” it, this does not
make the derivative flow “meta-meta”-data, nor does it imply
the original metadata should become a mediadata flow. The
derivative flow merely becomes another metadata flow based
on the original mediadata, albeit one with a more complex
relationship with other metadata.

Firstly, we will consider how the framework should han-
dle point-to-point media and metadata flows by introducing
the various elements which make up a simple version of the
framework.

Sources and Flows
There must be a point at which the mediadata enters the
framework, and we refer to this point as the mediadata
source. For simplicity, we initially presume that each me-
diadata flow is derived from a single source; with a more
complex implementation there is no reason why a mediadata
flow cannot enter the framework in a distributed manner. The
method by which the content of the mediadata is transported
through the framework should be suitable for that data type,
e.g. RTP for audio or video. The framework should be rel-
atively agnostic with regard to the method of transport, al-
though the protocol used should ensure timely delivery and
must be able to provide identity and timing information to the
framework (for presentation and synchronisation purposes,
discussed later).

The metadata source is the point at which a continuous meta-

data flow enters the framework. This may be at the same
point as the mediadata source or it may be distributed at a dif-
ferent point: for a live news feed a provider might construct a
metadata flow of relevant links at the same broadcast point as
the mediadata; while viewing a video of a pre-recorded lec-
ture a user may wish to receive metadata annotations from a
source other than that of the original lecture.

The metadata source must always output information in a
temporally relevant manner, and to do so it may require a
flow of mediadata from the appropriate source. If we pre-
sume that the mediadata flow will be a continuous stream,
then in a recorded broadcast scenario pre-compiled metadata
can either be sent along the appropriate metadata stream to
arrive ahead of the relevant mediadata, or held back to be
transmitted in near synchronisation with the mediastream. In
the first case the receiving end of the metadata flow must
buffer the data, in the second the source buffers instead. Al-
ternatively, in a live broadcast scenario the metadata would
normally be created as the mediadata is sent, so there will al-
ways be a processing delay which causes the metadata to lag
behind. Here either the mediadata source must be buffered
awaiting the readiness of the metadata, or the receiving end
of the metadata must buffer the mediadata instead. Of course,
in a live two-way conversational situation the scope for delay
and buffering is greatly reduced; otherwise the system would
become unusable.

In all cases, the greater the coordination of the flow, the lesser
the need for buffering becomes. A greater reliance on coor-
dination in turn requires more timely and reliable delivery
of the metadata flow. Unlike many forms of real-time mul-
timedia where data can be dropped or scaled back to com-
pensate for network congestion, lost metadata cannot be re-
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placed through interpolation. So the transport mechanism for
metadata flows must be real-time and reliable - although RTP
could be used over a reliable transport its whole design is tai-
lored to an unreliable scenario, hence is it unsuitable. (At
best, a contrived transport could be designed to assign one
atomic ‘chunk’ of metadata to each transport level packet so
that if one packet were lost or out of order it would not in-
validate other chunks; we do not see this as a very feasible
solution). In the future we expect QoS enabled networks will
allow guaranteed delivery of the type required to occur.

To encode the metadata flow above the transport layer, a
derivative of the TLS XML markup would seem suitable, and
if the metadata carried in its payload is also encoded using
XML, the namespace [Bra99] mechanism could be usefully
employed.

Presentation
We will refer to the point at which a user views and uses
a combination of media and metadata flows as a presenta-
tion point. (This is a deliberate avoidance of client / server
terminology since it will become apparent that within this
framework a ‘client’ to one ‘server’ can be a ‘server’ to an-
other.) There is no reason why a presentation point should
only be the convergence of a single mediadata and metadata
flow; it should pull together and synchronise as many meta-
data flows as the user requests. Since a mediadata flow is
the timer against which other flows are synchronised, any
metadata flow used at a presentation point must have been
derived from that mediadata at some point. Multiple presen-
tation points for multiple mediadata flows can exist on one
machine, for one user, at the same time, but they should be
dealt with as separate entities within the framework.

The presentation mechanism also starts to place requirements
on the information the framework must encode in the meta-
data flow (in addition to the metadata itself):

1. The metadata must have an identifying code. When mul-
tiple flows are combined at a presentation point an identifier
is needed to deal with packets from a particular flow in a con-
sistent manner; the identifier should also allow derivation of
the mediadata flow with which it must be synchronised.
2. To synchronise the media and metadata, each packet of
metadata must have a pair of validity timestamps bounding
when the metadata is true in relation to the mediadata and the
timing information embedded within it.
3. For user presentation there should be another pair of
timestamps bounding a extension around the valid time, dur-
ing which it is suggested that the metadata is displayed (al-
though this could be overridden by user presentation prefer-
ences).
4. To present the metadata in a suitable manner there must be
a code to describe the content type of the payload the meta-
data packet is carrying. Although the content code needs to
be standardised within the framework, the format of the con-
tent itself need not be.

Recorded lecture:
video (mediadata)

& associated
lecturer’s notes

(metadata)

Mediadata
Source

Metadata
Source

Presentation
Point

Mediadata
flow (RTP)

If the metadata is
derived from real-time

analysis of the lecture it
requires a mediadata flow

Local preference
and context filter

Student’s
Machine

Metadata
flows

Specialist
node adds

relevant
information
to the flow

To other students’
filter chains

(b)(a)

Presentation Point

Mediadata Source
RTP Server

Metadata Source
TLS Server

TLS Client

Mediadata
flow (RTP)

Metadata flow
(TCP / TLTP)

Figure 2: Simple framework configurations: (a)
The Temporal Linking Service; (b) A unicast im-
plementation of the recorded lecture presentation
scenario

Once the mediadata and metadata have been delivered by the
framework to a presentation point, it is expected that actual
display of the information to a user would take place in coop-
eration with a mechanism suited to the purpose, e.g. a SMIL
[Bug98] enabled browser.

At this point we can use the features of the framework to
describe the TLS system developed in the previous section
(figure 2(a)).

Filters
While the ability to select different metadata sources for a
particular mediadata flow is useful, the real flexibility of the
framework is through the introduction of processing nodes
between the metadata source and the presentation point.

These filter nodes are distributed throughout the framework,
taking one metadata flow as their input, modifying the meta-
data in some way, and then outputting a new metadata flow.
The output of one node can be linked to the input of another
so that the end result of metadata processing between source
and presentation is formed from a series of simpler, more
specialised, processing steps within the framework, thus ex-
tending the concept of filter chains introduced in the Micro-
cosm Open Hypermedia System [Dav92]. Each filter is ex-
pected to perform a relatively specific form of processing,
and by doing so it can be located at a point where the re-
sources it may require are best available. As a result of this,
individual metadata flows within the framework should carry
specific types of metadata payloads to allow maximum flexi-
bility between filters. A filter should not have to de-multiplex
a metadata flow so it can select only relevant data. Separation
of the metadata from the mediadata flow means that many fil-
ter nodes will not need to receive the original mediadata flow,
conserving network resources.

Filter nodes introduce inevitable delays in the delivery of
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metadata from source to presentation point. In minimising
this delay we clarify the question of buffering presented ear-
lier: to give the filters as much processing time as possible,
metadata should leave the source as soon as it can, which
would normally require mediadata buffering at the presenta-
tion point.

The end effect of a filter should be to either add or subtract
metadata from that which a user receives at a presentation
point. To add data, the filter output flow can be synchronised
with the original metadata flow at the presentation point. To
remove, or truly filter, the metadata, the filter output should
be the only flow accepted at the presentation point: the origi-
nal flow must be dropped. To accommodate this, metadata
flow identities must incorporate the notion of derivatives,
such that the history of a flow can be traced back through fil-
ters to the original metadata source identity. Suggested pre-
sentation relationships (flow x must be presented with flow
y, but should not be presented with flow z) also need to be
encoded in the metadata flow.

Control
Even with buffering at the presentation point, network con-
gestion could delay metadata flows which need to be hard
synchronised with others; in this situation the stalled flow
can either be dropped, or the remaining flows must be paused
while waiting for resumption. Other pauses or temporal
movements may be user controlled, since the metadata flows
must be paused once the mediadata is. To provide such func-
tionality within the framework there must be control chan-
nels between the presentation point and the various filters
and sources that feed it; these might use a suitable control
protocol such as RTSP [Sch98].

There are two general approaches to propagating the control
messages: Send the control message from the presentation
point to the media and metadata sources, then propagate the
message to the next filter in the chain; or send the control
message to all the filters one hop ”upstream” of the presen-
tation point, then propagate the message up through the filter
chains to the sources.

DEVELOPING THE FRAMEWORK FOR MULTICAST
FLOWS
To fulfil the fourth requirement for distributed multimedia
applications the framework must also support multicast con-
nections. But the introduction of multicast capabilities also
vastly increases the functionality and flexibility the frame-
work can provide through its flows and filters.

Sources, Flows, and Presentation Points
Although media and metadata sources remain largely un-
changed, they now transmit data across the framework us-
ing multicast flows. A source will send a particular media or
metadata flow to any number of filter nodes or presentation
points in a multicast group. This approach is most advanta-
geous in a live broadcast or group presentation environment

since all the nodes receiving a flow can receive the same (me-
dia or meta) data in the same temporal moment.

In the case of a single presentation point requesting a flow
there is no advantage in using a multicast connection rather
than point-to-point, although even in this scenario communi-
cation between filter nodes may be better served by multicast.

Filters
To receive a metadata flow from another filter or source, a
filter node only has to join the multicast group to which that
flow is being sent. In turn the filter can easily transmit its
output to many other filters or presentation points using the
same mechanism. This use of multicast can create a much
more sophisticated web of interrelated filter chains available
to presentation points.

Multicasting filters also increases the scalability of the pro-
cessing service offered by each node. For example, in a live
video broadcast a hypermedia server may identify relevant
sections of the picture using image processing techniques. It
would be an inefficient use of both the hypermedia server and
network resources for the many clients who receive the video
stream to query the server individually; using the framework
the hypermedia server only processes the video once, then
the results are multicast through a metadata flow to as many
presentation points as requested.

Control
In many ways expanding the distribution of framework flows
(from one-to-one to one-to-many) is simplified through the
use of multicast. To receive a flow (from a source or filter)
a presentation point or filter can just join the multicast group
on which the flow is being transmitted; a much more elegant
solution than maintaining state about multiple point-to-point
links.

Other facets of control inevitably become more complex with
the introduction of group communication. A single source or
filter can be expected to control flows to many other nodes,
and any control messages to or from these nodes regarding
flow must be dealt with, raising several important questions:
How large a temporal discrepancy is needed for a source or
filter to launch a new (time offset) flow of the same output,
rather than relying on buffering within the framework? If one
downstream node of many pauses its flow should the other
flows continue whilst the paused flow is forked? Should the
data be buffered for as long as resources allow before re-
questing another forked flow from the upstream node?

SCENARIOS
Having described the framework it is useful to present some
motivating scenarios.

Live News Broadcast
A television news programme could be augmented by the
broadcaster using metadata. The audio-video stream of
the programme itself would be the primary mediadata flow,
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broadcast to many users with multicast. Classifications of
prospective news items and clips might be conveyed in ad-
vance but as a broadcast is compiled on-the-fly so the meta-
data must also be generated while the broadcast occurs.

Subtitles, although traditionally embedded within the video
stream, could be transmitted within a metadata flow and
merged back with the mediadata at presentation points sub-
scribed to the multicast group. Specialised filter nodes would
also receive the flow via multicast and translate it into other
languages which would in turn be multicast to presentation
points requesting that particular language. In this way a sin-
gle language broadcast can be viewed with subtitles in any
language for which there is a translation node; each trans-
lating node can process multiple subtitle flows for different
broadcasts.

Specialised metadata sources may provide compute intensive
analysis of the video stream and create metadata. This is
particularly valuable when the broadcast includes live mate-
rial which does not have associated metadata, or when other
material without appropriate metadata is used. Techniques
include scene segmentation and face recognition. Metadata
might also be generated based on existing metadata streams -
for example, information about the sources of material might
be expanded to information about permissions to reuse ma-
terial.

Links to related material can be provided by the originat-
ing broadcaster and from other sources such as the image
analysis node suggested above. Since they are transmitted
as multicast metadata flows, a user can receive links both
directly from the broadcaster and from nominated interme-
diate filters. These filters would take links from the original
flow (optionally resolve the links) and multicast a new flow
of links derived from a specialist linkbase. If more local to
the presentation point, such a filter might provide a linkbase
built upon a user’s previous interests or current context. See
figure 3.

Music Performance
While rehearsing, a musician might transmit a stream of their
music to a specialist node (either remote or local in relation
to the musician) which transcribes the audio into a MIDI
metadata flow (a MIDI enabled instrument could provide the
metadata at source).

This metadata flow could then be processed by a filter node
which would analyse the melody and return a match from
its database. Using a combination of the match from the
database and the original MIDI metadata flow for tempo, a
second filter node could use a remote music library to output
a flow of additional MIDI data for the matched tune. This
could provide suggestions for related music or even an ac-
companiment for the melody, which the rehearsing musician
could receive and play along to. We have exercised this sce-
nario through our tools for content-based navigation of music

based on melodic pitch contours [Bla98a].

Lecture Presentation
A lecturer may annotate a class by providing links to the rel-
evant point in the slides or online notes as a metadata stream.
This could be used directly by students with presentation
points in the same physical space as the lecturer, or accompa-
nying a mediadata broadcast of the lecture for distance learn-
ing. Whatever the location of the presentation point, it would
display the parts of the notes to coincide with that temporal
space in the lecture.

The framework can also accommodate any branching in the
presentation: to give further explanation of a particular sub-
ject the lecturer can refer back to an earlier point in the pre-
sentation or even to a previous lecture. The media and meta-
data streams will be reset accordingly, enabling the lecturer
to include both live and pre-recorded material in the same
class.

The lecturer might also suggest that students utilise a spe-
cialist linkbase for that particular subject area. The linkbase
would interact with the framework though a filter node, re-
ceiving the metadata flow of the lecturers’ notes and trans-
mitting a further metadata flow of links based on its process-
ing of the original notes.

Closer to the presentation point, a student may have an extra
linkbase of personal preferences, built up from their previous
browsing history. This too would interact through a filter
node, adding (or removing!) links to external information
tailored to that individual.

An enterprising student might then wish to share their per-
sonal linkbase with the rest of the class, a mechanism the
student could also use to distribute any insights or annota-
tions they have added during the lecture. Once given, the
entire lecture including metadata annotations can be stored
for replay to both individuals and groups of students.

A unicast realisation of this scenario is shown in figure 2(b).

CONCLUSIONS
In this paper we have presented the case for continuous meta-
data, and proposed a framework with the following features:

1. Metadata is continuous and traverses the framework in a
temporally significant manner.
2. The framework contains three types of node: sources, fil-
ters, and presentation points.
3. Mediadata is the flow against which other metadata flows
are synchronised. It would normally be the temporal multi-
media stream the metadata is derived from.
4. Metadata is carried through the framework in separate
flows to the mediadata, so that intermediate (filter and pre-
sentation) nodes need only receive and process the media or
metadata flows they require.
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Mediadata

Metadata (English subtitles)

Metadata (French subtitles)

Metadata (Image based analysis)

Metadata (Broadcasters relevant links)

Metadata (Specialist knowledge links)

Mediadata
(Video)

Metadata
(Subtitles)

Metadata
(Links)

News Content Provider
(Broadcaster)

Multicast Network Channels:
Filter chains are formed when 

nodes (filter or presentation  points)
join multicast groups

English to French
translation filter

node Image based analysis
metadata source

Specialist
linkbase

filter node

Presentation points join multicast
groups to provide the content 

required by the user 
(with a possible local filter node)

Preference and context
based local filter node

Figure 3: A framework configuration for the live news broadcast scenario

5. Transmission of media and metadata between nodes
should be multicast where possible.
6. Metadata flows must be carried by a reliable transport.
7. The metadata carried within the flow (its payload) can be
in any recognised metadata format, but must encode infor-
mation to synchronise and present the payload data.
8. Filter nodes perform processing on an incoming metadata
flow and output the results in another (amending the identify-
ing and derivative codes appropriately). The output from one
filter node can be chained to the input of another (or many
other) filter nodes to create a filter chain.
9. Control channels between nodes must manage the rate of
transmission and buffering of the temporal flows.

We have explored the requirement for streams of links to ac-
company multimedia streams, and for these to be synchro-
nised when some part of the link delivery must be in real-
time. Two experimental systems have illustrated these ideas,
the second in particular demonstrating this work in the con-
text of open hypermedia through use of the Fundamental
Open Hypermedia Model (FOHM). Since we regard links
as metadata, and we believe the linking scenarios extend nat-
urally to other forms of synchronised metadata, our study
makes a case for continuous metadata in general. We have
presented a general distributed model for working with con-
tinuous metadata, and discussed the implications of extend-
ing this to multicast.

In the same way as open hypermedia promotes separable hy-
perstructure, we are promoting separable metadata. Many of
the arguments in favour of open hypermedia are applicable
here. At first sight it may appear that multimedia formats
do not usually support embedded links, but we note that the

emerging MPEG standards effectively promote embedded
metadata and we anticipate that Web developers will instinc-
tively embed URLs in media streams. In many applications
there is a case for transporting digital media in a compos-
ite form including metadata, just as HTML with embedded
links is an effective transport and delivery format. However,
when we have multiple streams, described by one or more
metadata flows, operating in a real-time scenario, there is a
compelling case for handling the metadata separately.

Our future work is to realise the distributed metadata machin-
ery using multicast and to evaluate the approach. The ex-
isting experimental systems will also be extended to further
explore integration with other OHS components, particularly
content-based navigation and application of ontologies. The
distributed architecture raises systems infrastructure issues,
especially with respect to timely delivery when working with
mediadata and metadata streams together.
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