
141

GZIGZAG
A Platform for Cybertext Experiments

Tuomas Lukka & Katariina Ervasti

Introduction

”Computers are fundamentally broken!” lectures Ted Nelson. Unlike many
other critics, he also offers ideas for improving the situation. Some of his
ideas are currently being implemented by the Hyperstructure Group at the
University of Jyväskylä, Finland.This article describes GZigZag, which is
currently the Group’s main project. GZigZag is an implemention of ZigZag,
a computer paradigm invented by Nelson. The paradigm abandons many
concepts currently perceived as central to computing, such as folders, files,
and applications. Instead, it offers a more flexible way to arrange informa-
tion. At this early stage of development GZigZag already has advantages as
compared with other computer systems. It could also prove to be a fruitful
platform for new kinds of cybertextual writing experiments.

Defamiliarization of files, folders, and applications

Nelson (1999a) offers several reasons for why users face difficulties with
present PCs. This article only includes a short attempt to defamiliarize1
folders, applications, and files from the user’s point of view. It is not an
easy task, because folders, applications, and files belong to the first things
taught to a beginner, and as it is, they are not often questioned. Hierarchical
directories, also referred to as ’folders’, were invented to help finding the
right file among many files (Nelson 1999a). Let us imagine that in Septem-
ber 1999 a writer has been writing an article dealing with the impossible

142

nature of her cat Vilma. In September 2000 she wants to find the article
again to edit it for a new purpose. In order to find the article, she opens a
folder named ’Vilma’. The folder includes, let us say, twenty files, which
are either different drafts of the article, or notes including ideas the writer
considered worth writing down at some point of the writing process. The
files have names such as vilma3.doc, vilma4.doc, vilfoo.doc and vilmaprob.
doc. By the time the writer finished the article she had no time to write
out an index explaining the contents of each file. Finally, after opening
and closing several files, she succeeds in finding the right file and starts
working. When editing, she suddenly remembers that she had a slightly
different version of a certain paragraph in another document. Once again,
she has to start opening and closing files to find the right one.

Applications, then, are used for performing different tasks with the
computer (Nelson 1999a). Problems arise when a user wants to use the
same information in many applications. For example, a multimedia author
who has manipulated some sound with SoundEdit, might want to use that
sound in a multimedia presentation made with Macromedia Director.
Since applications do not support all existing file formats, he has to find
out which sound file formats Director supports. After a study of sound file
formats, he saves the file in a suitable format and imports it to Director.
But once again, if he later views the presentation and suddenly remembers
another sound sample recorded during the same session, which he might
want to use now, there will be no easy way to find that particular file. This
is because there is simply no connection between the Director file and the
original sound sample, nor between the original sound sample and the
second sample from the same session.

These examples demonstrate how the files and folders based model for
storing information is insufficient: it does not allow the users to track down
the conceptual relationships between interrelated pieces of information,
or, different versions of certain content. Files, folders, and applications are
easy to understand, but – as Nelson explains – they do not need to be the
fundamental concepts of software. The problems described above could
be solved by designing software in a wholly different way, starting from
different assumptions.

143

The traditions of Bush and Engelbart

Vannevar Bush and Douglas Engelbart both developed ideas for tools which
would improve the working conditions of people performing complicated
tasks in the complicated world. Bush, who had noticed the explosion
of information in the 1940s already, is famous for proposing Memex, a
”mechanized private file and library” designed to help individual scientists
store and handle the growing amounts of information needed in their work
(Bush 1945). Engelbart, the developer of NLS, a tool for collaborative
work, writes about the augmentation of man’s intellect, which has been the
goal of all of his work with computers. By augmenting man’s intellect he
means ”increasing the capability of man to approach a complex problem
situation, gain comprehension to suit his particular needs and to derive so-
lutions to problems” (Engelbart 1962). The purpose of our work is similar
to Bush and Engelbart: we want to find better ways for the production and
arrangement of information by creating, as Nelson (1999b) expresses it,
”a high-power personal and media system, with editing and presentation
systems that expand the state of art”.

Basics of ZigZag

Defining ZigZag is difficult, because it is so different from any other
software in the currently dominant computer paradigm. It is not an ap-
plication, an operating system, or a platform. It is a new way of putting
information into computers, a cross between a database, a filesystem, a
personal information manager, and many other things. ZigZag is simply
something new and different.

Cells, dimensions, views, and applitudes

A ZigZag structure consists of cells and dimensions. A ’cell’ is the basic
unit of information in ZigZag. A cell can contain an information unit of
any kind, for example a text string (e.g. ”Vilma”), an image (e.g. a picture
of Vilma), or sound (e.g. recorded ”Meow!” by Vilma). Cells can be con-
nected to each other along ’dimensions’, which are referred to with names
such as d.1, d.cursor, d.jokes, or d.comments. The number of dimensions

144

is not restricted, and it is easy to create new dimensions. For example, if
Ville wants to write down comments concerning several different cells, he
could use d.Ville-comment for connecting his comments to the cells. On
each dimension each cell has two ends, a negative end and a positive end,
and on each dimension only one cell can be connected to one end. This
means that on each dimension a cell can have at most two neighbours: a
predecessor, which is connected to the negative end of the cell, and a suc-
cessor, which is connected to the positive end of the cell.

Figure 1 shows a simple structure. In the figure, cells are represented
by rectangles, and neighbours along a dimension by a line.

Figure 1. Seven cells, connected to each other along the two dimensions d.1 and
d.2

Figure 2. The most important events of a day in a general view

145

There are several different visualizations (views) of the ZigZag structure.
The views range from ’general views’ that are useful for looking at all kinds
of structures to ’specific views’ that are useful for only one particular kind
of structure. For example, Figure 2 shows a generic view of a structure
that represents a day schedule.

Figure 3, then, shows a specific view of the same structure. The under-
lying data is exactly the same, but the specific view – designed especially
for the purpose – interprets the structure and draws the events in a visually
more intuitive way. Looking at another structure through this view would
usually not make sense, because the view is designed especially for this
structure.

Combining the specific view, such as the schedule view above, with
special operations for editing such a structure (for example dragging the
start and end times with the mouse) makes an ’applitude’. Thus, an ap-
plitude consists of views and operations designed for a particular purpose.
Even though the term ’applitude’ resembles the term ’application’, there
is an important difference: in ZigZag nothing is separate, and applitudes,
unlike applications, can be combined with each other, as the following
example will show.

Figure 3. The same events in a specific view

146

Example: Address book and Family tree in GZigZag

One of the first examples which Nelson has used to demonstrate ZigZag
is the Holm Family Demo, a family tree prepared for his talk at the Uni-
versity of Oslo, to show how he is related to one of the professors at the
University. Here, a variant of Nelson’s original example is used, combined
with an address book.

The structure of the address book is simple: it is a list of names and
addresses. The names are listed along the dimension d.2 in alphabetical
order. The addresses are connected to the names along the dimension d.1.
Figure 4 shows the (incomplete) address book in the Row View.

Since the list of relatives is long, only a subset of it can be seen on the
screen at a time. In Figure 4 the cursor is on the cell ”cousin 1”. Moving the
cursor downwards would cause more cells below the cell ”grandfather 2”
(on dimension d.2) to become visible. Next, the address book is combined
with the family tree, which is represented by a slightly more complicated
structure, shown in Figure 5.

The two dimensions d.marriage and d.children are used to represent the
family tree. Siblings are connected along d.children, and married couples
along d.marriage2. An extra cell (”+”) is used on dimension d.marriage to
make the structure symmetric, and the list of children from this marriage
(on dimension d.children) starts from that cell. Figure 5 and Figure 6 show
two different views of the structure. The Row View, as Figure 5 shows,
enables dealing with one family at a time. The Vanishing View, shown in
Figure 6, gives a more thorough picture of the family tree as a whole.

It is important to understand that the same cells are used to represent the
relatives in both the address book and the family tree, but the connections
related to the two structures are on different dimensions. In the default
views only two or three dimensions (x,y,z) can be shown on the screen
at a time. As can be seen from Figure 4, the dimensions used for viewing
the address book are x=d.1 and y=d.2. Rotating the dimensions to x=d.
marriage and y=d.children shows the family tree, as in Figure 5.

147

Figure 4. The address book in the Row View

Figure 5. One family of the family tree in the Row View

Figure 6. The family tree in the Vanishing View

148

The address book and the family tree could still be combined with
further structures. For example, a cell representing a certain person could
also be connected to photographs and emails related to that person. Simply,
in GZigZag everything can be connected with everything else, based on
the user’s associations. One consequence of the ZigZag structure is that
all connections are bidirectional, which means that navigating between
related bits of information is easy.

Utility of GZigZag

ZigZag offers several advantages compared to existing computer systems.
To begin with, as Nelson usually remarks after showing his Holm Family
Demo, ”we did not create a genealogy program”. Modeling a complicated
structure, such as the family tree, on usual computer systems would require
one to create a specific program for that purpose. Modeling a complicated
structure using GZigZag requires one only to create some new cells and
connect them along dimensions.

Remarkably, there are no separate files and applications in ZigZag.
As seen above, the same cells can simultaneously be parts of different
structures without any restrictive boundaries. Thus, a multimedia author
using GZigZag would not have the same problem of file formats as the
multimedia author described in the example above. He would not have
to bother to find out what file formats a multimedia authoring applitude
supports, since it supports everything. Because the same cells can be used
in various structures, also updating information becomes easier. Updating
the last name of a newly married aunt both in the family tree and in the
address book requires updating only one cell.

ZigZag also offers a more flexible way to arrange information than the
conventional model of files and folders. A certain piece of information is
found by following connections the user has previously made based on his
associations. Hence, a user of GZigZag does not need to remember any
file names in order to find the information he is looking for. The above
mentioned writer looking for the document containing an interesting para-
graph about Vilma and the multimedia author looking for the sound file
could simply follow a connection made previously.

Finally, ZigZag separates the structure and the visualization of informa-
tion. This is somewhat similar to HTML 4.0 and CSS (Cascading Style
Sheets), but ZigZag generalizes the concept: all structures and all visuali-

149

zations are possible. The same GZigZag structure can be used in different
media from mobile phones to the immersive virtual reality of the CAVE,
because different visualizations can be constructed to take full advantage
of each medium.

Conclusion and future work

The primary purpose of this article (which is the first publication of the
Hyperstructure Group) has been to present a short summary of our ongoing
work. Because we are dealing with such a different view of computing it
is very difficult to find ways to express our ideas – indeed, the difficulty
of explaining new ideas to people has been one of the main problems of
Nelson’s broader Xanadu project – and it is even harder to try and imagine
all the possible ways to use this model. There seems to be, however, a great
potential for all kinds of participatory and interactive writing experiments
in this model, where reading, writing, rewriting, restructuring, and pro-
gramming all happen in the same space.

In the near future we will focus on developing a stable, working GZig-
Zag on the Java platform, and, a cellular language Clang which would
make programming in GZigZag environment easier. We are also planning
a network protocol for exchanging cells between computers. Furthermore,
we continuously develop applitudes for several purposes in order to learn
more about the system3. We believe that, ultimately, Nelson’s original and
creative ideas should be understood and implemented. Our long-term goal
is to develop a computer system we would like to use ourselves.

Acknowledgements

We would like to thank Theodor Holm Nelson and Marlene Mallicoat
for collaboration. All Nelson quotes without reference are from private
discussions with him. We would also like to thank the other members of
the Hyperstructure Group: Tuukka Hastrup, Antti-Juhani Kaijanaho and
Vesa Parkkinen.

150

NOTES

1. According to Fowler, defamiliarization is the use of a strategy
to force us to look at familiar things in a critical way, to see
the absurdity of a familiar object. Criticism, as Fowler sees it,
is not a negative practice. The basic motivation for criticism is
”healthily sceptical inquisitiveness”, which can give a stimulus
to develope things for the better (Fowler 1986, 34–35, 42).

2. If a person has been married several times, a mechanism called
cloning is used to represent this in the structure. However, this is
beyond the scope of this article.

3. Everyone interested is welcome to test and work on the current
version of GZigZag, which can be downloaded from the project’s
homepage: <http://gzigzag.sourceforge.net/>. GZigZag is a free
software project: the source code is released under the LGPL
license and interested parties are welcome to join our mailing
list.

151

REFERENCES

Bush, Vannevar (1945) ”As We May Think”, The Atlantic Monthly 176:1
(July), 101–108. Available as electronic document: http://www.
theatlantic.com/unbound/flashbks/computer/bushf.htm

Engelbart, Douglas (1962) Augmenting Human Intellect: A Conceptual
Framework. Stanford Research Institute Summary Report. Available
as electronic document: http://www.histech.rwth-aachen.de/www/
quellen/engelbart/ahi62index.html

Fowler, Roger (1986) Linguistic Criticism. Oxford: Oxford University
Press.

Nelson, Ted (1999a) Ted Nelson’s Computer Paradigm, Expressed as
One-Liners. Electronic document: http://www.sfc.keio.ac.jp/~ted/TN/
WRITINGS/TCOMPARADIGM/tedCompOneLiners.html

Nelson, Ted (1999b) ZX Views. Electronic document: http://www.xanadu.
com/FW99/ZXviews.html

