
A new actor-based structure for distributed systems

Antonina Dattolo
Dipartimento di Matematica ed Applicazioni ”R Cacciopoli”

Università degli Studi di Napoli Federico II, Italy
E-mail: dattolo@unina.it

Flaminia L. Luccio
Dipartimento di Informatica

Università Ca’ Foscari Venezia, Italy
E-mail: luccio@unive.it

Abstract - In this paper we propose a formal analytic graph-
based description of zz-structures, an unusual, graphic-centric
way of linking and organizing information. Starting from this
formalized model, we make active and operative all the enti-
ties of the system, obtaining an actor-based model, called AZ.
The actors are organized in different hierarchical levels and
cooperate in order to achieve common goals and solve prob-
lems. In particular, the use of actor-based technology is helpful
in enhancing distributed computing capabilities, and interop-
erability in grid systems. The combination of zz-structures and
of cooperation activities of different actor classes allows us to
define dynamic virtual organizations and to analyze some of
issues related to system topological evolutions.

1 Introduction

The massive use of the Web’s functionality and the need to
gather enough computational resources for running different
applications at a single location are some of the aspects that
have led to the birth of the grid infrastructure. Distributed
and heterogeneous institutions and communities may share
data, programs, and computing resources to implement dif-
ferent decentralized services for science, government and
business. The grid can thus been seen as an extended Web,
where users share information, computer resources and ser-
vices. Although machines and resources are heterogeneous,
i.e., are based on different platforms, hardware and software
architectures or computer languages, the way to access them
is via open standards. Moreover, differently from classical
distributed computing, grid computing on grid infrastruc-
tures offers innovative applications and in some cases also
high-performance computation. Examples of grid applica-
tions are: visualization of large distributed data sets, shar-
ing scientific instruments in remote computers, distributed
processing of demanding data analysis and intensive simu-
lations on remote supercomputers.
More formally, in [7], the authors define the grid problem as
”coordinated resource sharing and problem solving in dy-
namic, multi-institutional, virtual organizations”.
Certainly, distributed computer networks may be considered
the heart of the computational grids, but additional mecha-
nisms must be added to the networks in order to model a
grid in the stronger sense. The technical demands of grid
concepts at this level require increasing amounts of ”intel-

ligence”, collaborative ability, adaptability, component mo-
bility, etc.; also, gridness seems to imply that the system is
”aware of itself” to a certain extent, and has the ability to
carry out its tasks ”itself”, without a great deal of manual in-
tervention; in other words, characteristics frequently associ-
ated with agents. The use of agent technology may be help-
ful in simplifying and enhancing distributed computing ca-
pabilities, and in particular enhancing intelligent interoper-
ability in grid systems [2]. Representing the computational
and communication components of a computational grid as
agents allows these components to be both uniformly repre-
sented within the architecture, and managed in a straightfor-
ward way by higher level components.

In this work we concentrate on AZ, a grid model based
on an extension Actor-based of Zz-structures.
Actors are a class of computational agents, firstly defined by
Hewitt [9], and successively intensively studiedby Agha [1].
Zz-structures are particular hypermedia structures, used for
linking and organizing information; they were firstly intro-
duced by Ted Nelson [13], and then have been studied from
many different perspectives (an example is provided in [4]).
The choice of modeling with zz-structures some fundamen-
tal parts of a grid, such as the organizations, responds to
key aspects of grids, that are, e.g., composition of resources,
closure and fractal properties [10]; also, zz-structures are
minimalist and may be defined in a recursive way, by com-
position, generating local and global grids, or a hierarchy
of grids, and larger grids can be constructed by composing
smaller (perhaps local) grids. It may be possible for local
grids to operate independently from larger grids, of which
they may temporarily be a part. Local grids can provide het-
erogeneous enclaves where different standards, policies, or
systemicproperties such as adaptability, scalability, security,
reliability, etc., hold.
In Section 2 we first propose a formal analytic graph-based
description of zz-structures. Note that, a first and prelim-
inary step towards the formalization of the notion of zz-
structures in terms of graph theory can be found in [8],
where the authors intuitively present this new model. Then,
in Section 3, starting from our formalized model, we make
active and operative all the entities of the system: the re-
sult is a distributed, actor-based model capable of represent-
ing both hypermedia distribution and collaborative schemes
among different and heterogeneous entities. These entities
and the data they store, may be viewed as a virtual organi-



zation V O, and are part of a particular grid infrastructure,
the data grid. This V O is organized in different hierarchi-
cal levels and entities cooperate in order to achieve common
goals and solve problems. As an example, in Section 4, we
show how these entities may collaborate in order to support
dynamically joining of new resources to a V O. We conclude
in Section 5.

2 Virtual Organizations

According to [15], a virtual organization V O is defined as a
set of concrete organizations O, that collaborate as peer, by:
a the set of resources and services; the interface for access-
ing them; the set of policies for the different operations; and
the set of protocols for implementing the policies. We can
recursively define a concrete organization as follows.

Definition 1 An organization O is a tuple (S, SE, P, PR)
where S is a structured set of resources, equipped with an
interface for accessing them. Each resource offers a subset
of services SE and supports a subset of policies P for the
operation of S and a subset of protocols PR for the imple-
mentation of P .

The interface of an organization O is the set of externally
visible operations through which the resources and services
of the O are accessed; the policy P is a set of rules spec-
ifying the admissible patterns of use for some types of re-
sources and/or services; finally, a protocol PR defines the
sequence of interactions among the resources and services
of an O, used to implement a policy P .
In this section we first recall some basic graph theory no-
tation and then we propose a formal model for S, the first
component of an organization O.

2.1 Basic graph theory definitions

A graph G is a pair G = (V, E), where V is a finite non-
empty set of elements called vertices and E is a finite set
of distinct unordered pairs {u, v} of distinct elements of V
called edges. A multigraph is a triple MG = (V, E, f)
where V is a finite non-empty set of vertices, E is the set
of edges, and f : E → {{u, v} | u, v ∈ V, u 6= v} is a
surjective function.
An edge-colored multigraph is a triple ECMG =
(MG, C, c) where: MG = (V, E, f) is a multigraph, C is a
set of colors, c : E → C is an assignment of colors to edges
of the multigraph. In a multigraph MG = (V, E, f), edges
e1, e2 ∈ E are called multiple or parallel iff f(e1) = f(e2).
Thus, a graph as a particular multigraph G = (V, E, f)
without parallel edges. Given an edge e = {u, v} ∈ E,
we say that e is incident to u and v; moreover u and v are
neighboring vertices. Given a vertex x ∈ V , we denote
with deg(x) its degree, i.e., the number of edges incident
to x, and with dmax the maximum degree of the graph, i.e.,
dmax = maxz∈V {deg(z)}. In a edge-colored (multi)graph
ECMG, where ck ∈ C, we define degk(x) the number of
edges of color ck incident to vertex x. A vertex of degree 0
is called isolated, a vertex of degree 1 is called pendant.
A path P = {v1, v2, . . . , vs} is a sequence of neighboring

vertices of G, i.e., {vi, vi+1} ∈ E, 1 ≤ i ≤ s − 1. Fi-
nally, a graph G = (V, E) is connected if: ∀x, y ∈ V , ∃ a
path P = {x = v1, v2, . . . , vs = y}, with {vk, vk+1} ∈ E,
1 ≤ k ≤ s − 1.

2.2 Resources and interface of an organization O

The set of resources S in a concrete organization O are ar-
ranged using zz-structures, a new, graph-centric system of
conventions for data and computing. Zz-structures are in-
trinsically non-hierarchical (hierarchy is optional), and there
are intrinsic visualizations for everything, viewable in rows
and columns, to considerable benefit. Some examples of in-
terfaces for accessing them are proposed in [13].
A zz-structurecan be thought of as a hypermedia space filled
with cells: each cell (resource) may have a content: in this
case, it is atomic if it contains only one unit of data of one
type [11], or it is referential if it represents a package of dif-
ferent cells. There are also special cells that do not have a
content and thus are positional, i.e., have a positional or to-
pographical function.
Cells are connected together into linear sequences, each of
which is composed of links of the same color: the glue of
a linear series is its dimension. A single series of cells con-
nected in the same dimension is called rank, i.e., a rank is in
a particular dimension. Moreover, a dimension may contain
many different ranks. Each rank has a starting and an ending
cell, called headcell and tailcell, respectively, and the direc-
tion from the starting (ending) to the ending (starting) cell is
called posward (respectively, negward). For any dimension,
a cell can only have one connectionin the posward direction,
and one in the negward direction. This ensures that all paths
are non-branching, and thus embodies the simplest possible
mechanism for traversing links.

Zz-structures. A zz-structure can be viewed as a multi-
graph where edges are colored, with the restriction that ev-
ery vertex has at most two incident edges of the same color.
Differently from [8], we consider undirected graphs, i.e.,
edges may be traversed in both directions.

Definition 2 A zz-structure is an edge-colored multigraph
S = (MG, C, c), where MG = (V, E, f), and ∀x ∈
V, ∀k = 1, 2, ..., |C|, degk(x) = 0, 1, 2. Each vertex of
a zz-structure is called zz-cell and each edge a zz-link.

An example of a zz-structure is given in Figure 1. Observe
that we do not admit the property of having multiple edges
of the same color as it is not interesting in the model we are
considering.

Dimensions. An alternative way of viewing a zz-structure
is a union of subgraphs, each of which contains edges of a
unique color.

Proposition 1 Consider a set of colors C =
{c1, c2, ..., c|C|} and a family of indirect edge-
colored graphs {D1, D2, ..., D|C|}, where Dk =
(V, Ek, f, {ck}, c), with k = 1, ..., |C|, is a graph
such that: Ek 6= Ø, and ∀x ∈ V , degk(x) = 0, 1, 2. Then,

S =
⋃|C|

k=1 Dk is a zz-structure.



v
1

v
2

v
8

v
5

v
3

v
9

v
12

v
6

v
4

v
7

v
10

v
11

v
13

v
14

Figure 1. A zz-structure where thick, normal and dotted
lines represent three different colors.

Definition 3 Given a zz-structure S =
⋃|C|

k=1 Dk , then each
graph Dk , k = 1, . . . , |C|, is a distinct dimension of S.

From Proposition 1 we derive that, all vertices exist in all
dimensions, and that the maximum degree dmax ≤ 2|C|.
Finally, ∀ei ∈ Ek, c(ei) = ck.
From Figure 1 we can extrapolate three dimensions, Dthick ,
Dnormal , and Ddotted, as shown in Figure 2. Moreover, a
dimension Dk = (V, Ek, f, {ck}, c) is composed of:

• A set of isolated vertices, i.e, {x ∈ V : degk(x) =
0}, eventually empty. E.g., in dimension Dthick ,
v5, v12, v13 are isolated vertices.

• A set of connected components identified by a se-
quence of vertices {x1, x2, . . . , xs}. These vertices
may create distinct paths, i.e., degk(xi) = 2, ∀ i : 2 ≤
i ≤ s−1, while degk(x1) = degk(xs) = 1. For exam-
ple, path {v11, v6, v7, v14} in dimension Dthick . Ver-
tices may also create distinct cycles, i.e., paths where
x1 = xs, s > 2, and degk(xi) = 2 ∀ i : 1 ≤ i ≤ s.
E.g., the cycle {v1, v2, v3, v4, v10, v9, v8, v1} in dimen-
sion Dthick.

Ranks. Each series of connected cells, identified in the
three different dimensions of Figure 2, is defined as a rank.

v
1

v
1

D
thick

D
normal

D
dotted

v
2

v
3

v
3

v
5

v
11

v
13

v
12v

5

v
6

v
7

v
14

v
10

v
6

v
9

v
14

v
4

v
10

v
13

v
1

v
4

v
12

v
13

v
8

v
9

v
10

v
11

v
2

v
4v

7

v
8

v
2

v
3

v
14

v
11

v
5 v

6
v

7

v
12v

9

v
8

Figure 2. The dimensions of the zz-structure of Figure 1.

Definition 4 Consider a dimension Dk =
(V, Ek, f, {ck}, c), k = 1, . . . , |C| of a zz-structure
S =

⋃|C|
k=1 Dk . Then, each of the lk connected components

of Dk is called a rank.

Thus, each rank Rk
i = (Vi, E

k
i , f, {ck}, c), i = 1, . . . , lk ,

is an indirect, connected, edge-colored graph that owns the
following properties: Vi ⊆ V , Ek

i ⊆ Ek , and ∀x ∈ Vi,
1 ≤ degk(x) ≤ 2.

A rank is in a particular dimension and it must be a
connected component; consequently, a dimension can
contain one (if lk = 1) or more ranks. Moreover, the
number lk of ranks differs in each dimension Dk . E.g.,
in Figure 2, in dimension Dthick , we have two ranks
defined by vertices {v1, v2, v3, v4, v10, v9, v8, v1} and
{v11, v6, v7, v14}, and in dimension Ddotted , we have only
rank {v1, v3, v5, v7, v6, v14}.

Definition 5 A ringrank is a rank Rk
i =

(Vi, E
k
i , f, {ck}, c), i = 1, . . . , lk, where ∀x ∈

Vi, degk(x) = 2.

E.g., a ringrank is the cycle defined by vertices {v1, v2,
v3, v4, v10, v9, v8, v1} in dimension Dthick of Figure 2.
Many ranks can be in the same dimension [13]. In this case,
they are defined as parallel ranks.

Definition 6 Given a zz-structure S =
⋃|C|

k=1 Dk , m ranks
Rk

j = (Vj , E
k
j , f, {ck}, c), (j = 1, 2, . . . , m, 2 ≤ m ≤

lk) are parallel ranks on the same dimension Dk, k ∈
{1, . . . , |C|} iff Vj ⊆ V , Ek

j ⊆ Ek, ∀j = 1, 2, . . . , m,
and

⋂m
j=1 Vj = ∅.

Thus, the ranks are on the same dimension Dk , and cannot
have cells in common. In Figure 2, the two ranks in the
dimension Dthick are parallel, as well as the two ranks in
the dimension Dnormal .

Definition 7 Given a zz-structure S =
⋃|C|

k=1 Dk, a rank
Ra

i = (Vi, E
a
i , f, {ca}, c) in dimension Da and a rank Rb

j =
(Vj , E

b
j , f, {cb}, c) in dimension Db , a 6= b, we say that

Ra
i and Rb

j are intersecting ranks on different dimensions iff
Vi, Vj ⊆ V , Ea

i ⊆ Ea, Eb
j ⊆ Eb, and Vi

⋂
Vj 6= ∅.

Thus the ranks are on two different dimensions, and
have one or more cells in common, given from the in-
tersection of Vi and Vj . In Figure 1 and 2, e.g., the
rank {v1, v2, v3, v4, v10, v9, v8, v1} of dimension Dthick in-
tersects, e.g., the rank {v8, v2, v3, v9, v12} of dimension
Dnormal in vertices v2, v3, v9, v8.

Local and global orientation.

Definition 8 Consider a rank Rk
i = (Vi, E

k
i , f, {ck}, c) of

a zz-structure S =
⋃|C|

k=1 Dk . Then, ∃ a function gi
x : Ek

i →
{−1, 1}, such that, ∀x ∈ Vi, if ∃y, z ∈ Vi : {x, y}, {x, z} ∈
Ek

i , then gi
x({x, y}) 6= gi

x({x, z}). Thus, we say that each
vertex x ∈ Vi has a local orientation in Rk

i . Given an edge
{a, b} ∈ Ek

i , we say that {a, b} is in a posward direction
from a in Rk

i iff gi
a({a, b}) = 1, else is in a negward direc-

tion.

Thus, local orientation ([6]) is a property related to
each vertex of a rank. The vertices of the zz-structure have
also a global orientation, i.e., we can extend the previous
property to all the ranks and dimensions. Moreover, all the
local choices of orientation are consistent.



Definition 9 Assume a zz-structure S =
⋃|C|

k=1 Dk has l =∑|C|
k=1 lk ranks Rk

i = (Vi, E
k
i , f, {ck}, c), i = 1, . . . , lk ,

and k = 1, . . . , |C|. Then, S has global orientation iff,
∀{x, y} ∈ Ek

i , ∀i = 1, . . . , lk, and ∀k = 1, . . . , |C|, we
have gi

x({x, y}) 6= gi
y({x, y}).

3 Actor-based zz-structures

In this section we present AZ, a grid model based on an ex-
tension Actor-based of Zz-structures. AZ is a new model for
describing autonomous organizations, where actor classes
are organized based on a hierarchy of interacting levels, as
depicted in Figure 3. Organizations are at the top of the hi-
erarchy (zz-a-structure), viewed in terms of complex actors
that know and directly manipulate dimensions and isolated
cells; the dimensions are uniquely identified by their colors
and know and manipulate the ranks. The ranks know and co-
ordinate cells and the links that connect them; finally, cells
and links are primary entities and exist independently from
the structures at the above levels.

zz-a-cell

zz-a-rank

zz-a-dimension

zz-a-structure

Figure 3. Actor-based hierarchy.

We assume that services SE, policies P and protocols PR
of an organization are distributed among actor classes as
shared agreements or capabilities, and are not centralized
in some framework. These three components are managed
by appropriate scripts, interaction schema and by the coop-
eration activities among actors. Now, we first recall a brief
descriptionof the actor model and we then propose an actor-
based model for the components SE, P and PR of an orga-
nization O.

3.1 Brief description of the actor model

In distributed systems the actor model [1] is used in order
to model concurrent computations.
Each actor is defined by a passive part, that is, a set of local
variables, termed acquaintances in [1], that constitute its
internal state; an active part, that reacts to the external en-
vironments by executing some predefined procedural skills,
called scripts defining the behavior of the actor; finally, its
mail queue, that buffers incoming communication (i.e., mes-
sages).
Each actor has a unique name (the uniqueness property) and
a behavior, and communicates with other actors via asyn-
chronous messages.

Actors are reactive in nature, i.e., they execute only in re-
sponse to messages received, and may perform three basic
actions: create a finite number of actors with universally
fresh names; send a finite number of messages; assume a
new behavior.
An actor’s behavior is deterministic i.e., its response to a
message is uniquely determined by the message contents
and its internal state.
An actor is thus described by specifying two elements: its
data part and its script part, that is a set of scripts which can
be executed by the specific actor.

(DefActorActorName
〈acquaintances-list〉 {scripts-list})

However the ”pure” actor model suffers from rigid
point-to-point communication protocol, that limits the
design of efficient collaboration strategies; an extension of
communication strategies is proposed in [5] and used in this
work. So, the communication between a sender and one
or more receivers may use multicasting message passing
protocols and is accomplished by the send command types:
send allows an actor to send a point-to-point message;
send-m allows an actor to send multicasting messages
on the network; send-now and send-now-m are similar
to the previous send, but they require an acknowledge
message from the receiver actors in order to continue the
computation.
A general form of the send construct is the following:

send-type (script-name argument-list; . . . ;
script-name argument-list) to destination-list

where: send-type . . . to is one of the send commands;
script-name argument-list determines the script (with its
arguments, if any) that the destination actors trigger once
they have received the message; destination-list, intro-
duced by the keyword to , identifies the actor(s) to which
the message is addressed.

3.2 Services, protocols and policies

The first level of the hierarchy is composed by a unique
special actor zz-a-structure, that coordinates the whole
organization; it is a referential actor that collects and
manages the family of dimensions and of isolated cells, it is
composed of.

(DefActor zz-a-structure
〈dimensions isolated-cells . . . 〉
{return-colors return-ranks return-cells
return-links check-global-orientation
delete(cell1 , . . . , cellsj ) . . .})

Dimensions and isolated cells are respectively addressed
by the acquaintances dimensions and isolated-cells.
Other information on the zz-structure can be obtained by
activating specific scripts: for example, the first four scripts
presented in this actor class enable it to derive colors,
ranks, cells and links that constitute the zz-structure. These
operations are performed by sending querying messages
to dimensions and isolated-cells; ranks and used colors
are obtained directly from dimensions actors, while cell



and link references are requested from dimensions to ranks
actors. Other scripts, such as check-global-orientation
that checks whether local orientation of neighboring cells
are consistent, and delete(cell1 , . . . , cellsj ), that deletes
a chosen set of cells, are used in dynamic operations
illustrated in Section 4.
The dimension is at the second level of the hierarchy.

(DefActor zz-a-dimension
〈color ranks structure isolated-cells〉
{check-dir(x, y) merge-ranks update . . .})

Any dimension knows its color, the set of ranks it is
composed of and the zz-structure it belongs to. The script
check-dir(x, y) checks if the addition of a new edge {x, y}
directed from x to y is admittable, and merge-ranks
merges two distinct ranks into a new single one.
The third level of the hierarchy is composed by the ranks.

(DefActor zz-a-rank
〈(cell1, cell2, . . . , celln)
/((cell1, cell2), . . . , (celln−1, celln))
color dimension ringrank〉
{check-local-orientation get-color return-ring
set-ringrank set-head set-tail delete . . .})

The (cell1, cell2, . . . , celln) acquaintances repre-
sent the ordered list of zz-cells present in the rank.
Derived only-read attributes are the colored links
((cell1, cell2), . . . , (celln−1, celln)). ringrank is a
boolean attribute, that assumes ringrank = true if the rank
is a ringrank (i.e., if cell1 = celln), false otherwise. The
script return-ring checks if the rank is a ringrank, while
the script set-ringrank transforms a rank into a ringrank.
The last layer of our hierarchy is constituted by the zz-cells.

(DefActor zz-a-cell
〈resource zz-structure/zz-rank(s) freedir . . .〉
{check-degree(color)
return-freedir(color) (delete, x, y, cj) . . .})

A zz-cell is an atomic or composite resource in the
organization, and it has minimal information about the
external environment: it addresses the zz-structure, if
it is an isolated cell, or alternatively the set of ranks it
is contained in. The script check-degree(color) checks
the degree of two vertices in a specific dimension; the
script return-freedir(color), given a color k, returns the
non-used direction; thus, the acquaintance freedir assumes
value both if the cell x is an isolated vertex, posward (or
negward) when the posward (or negward) part is free, and
finally none if degk(x) = 2.

4 Evolution of an organization O

An interesting issue that we want to address is the dynam-
ical join of a new resource to the organization O. This can
be handled at the actor level with the addition of a new link.
In this section we will show how a session actor may co-
ordinate the addition of an edge between two cells of an

organization O. We will show the execution code of a di-
mension actor Dk , and we will describe the different ac-
tions executed by ranks, zz-cells and the zz-structure. The
interaction between actors is defined using the diagrammatic
language AUML (Agent Unified Modeling Language) [14],
extension of UML (Unified Modeling Language) for agents.
Assume A is the user-author that interacts in order to add the
link, O is the name of the zz-structure, Dk is the dimension
with color ck , Rk

(x) is the name of the rank x belongs to. If x

is an isolated vertex in dimension Dk , that is, degk(x) = 0,
then we assume that Rk

(x) = ∅. Let us now consider a ses-
sion actor SA of a O. Whenever SA receives from an author
A the message (add (x, y) ck), regarding the addition of the
new edge {x, y} of a particular color ck and directed from x
to y, it sends the following multicast messages to vertices x
and y:

send-now-m(checkdegree(ck)) to x y
The control returns back to the session actor SA that will
continue the addition operation only if both x and y have
at least a not-occupied direction (i.e., degk(x) 6= 2 and
degk(y) 6= 2). If this condition is not satisfied, then SA
communicates to A that is not possible to add the edge
{x, y} in dimension Dk , and thus A will decide whether
to send a new request or not. On the other hand, if the ad-
dition is admissible then SA sends to dimension Dk all the
information necessary to add the edge i.e., (x, y), the edge in
form of an ordered list to identify posward and negward di-
rections, the address Rk

(x) of the rank x belongs to in dimen-

sion Dk , with the relative degree degk(x), and the acquain-
tance freedirx that identifies the direction(s) on which x
has no edge. In the same message, analogous information
are sent also for y, i.e. Rk

(y), degk(y) and freediry . The

behavior of Dk is formally described in Table 1.

Addition((x, y), Rk
(x), degk(x), freedirx, Rk

(y), degk(y), freediry)
1. check-dir(x, y);
2. if dir = incoherent
3. then send (incoherentdir (x, y) ck) to SA

4. else Case: Rk
(x) = Rk

(y) 6= ∅: send (ringrank) to Rk
(x);

5. Rk
(x) = ∅ and Rk

(y) 6= ∅: send (addHead x) to Rk
(y);

6. Rk
(x) 6= ∅ and Rk

(y) = ∅: send (addTail y) to Rk
(x);

7. Rk
(x) = Rk

(y) = ∅: createNewRank ((x, y));
8. Rk

(x) 6= Rk
(y): mergeRanks (Rk

(x), R
k
(y)).

Table 1. Addition of an edge. Code of dimension Dk .

At the receipt of this message, Dk checks (line 1) if the in-
troduction of the edge (x, y) maintains a coherent direction
of the edges (i.e., maintains global orientation). If this is not
possible (line 2), then Dk communicates to SA (and SA re-
spectively to A) that is not possible to add the edge {x, y}
in dimension Dk (line 3). Else, if the edge maintains global
orientation, the dimension Dk will assume four different be-
haviors depending on the values of Rk

(x) and Rk
(y):

Case Rk
(x) = Rk

(y) 6= ∅ (line 4 of Table 1). If Rk
(x) = Rk

(y) 6=
∅, then x is the tailcell and y the headcell of the same rank



Rk
(xy) = Rk

(x) = Rk
(y). In this case, Rk

(xy) is transformed

into a ringrank under Dk’s request. This operation is per-
formed by script set-ringrank, local at Rk

(xy) (see Figure
4), and will end only after x e y have updated the variable
freedir. Then Rk

(xy) communicates to Dk the end of the
operation and this information is forwarded to SA.

x y D
k

sessionActor

checkdegree (c )k

check-dir (x,y)

[dir=incoherent] incoherentdir ((x,y), c )k [R =R  =O] ringrank(x) (y)

k k

R
k

(xy)

set-ringrank

update ((x, y), c )k

[deg (x)=2&deg (y)=2] add((x, y) ...)k k

Figure 4. Case Rk
(x) = Rk

(y) 6= ∅.

Case Rk
(x) = ∅ and Rk

(y) 6= ∅ (line 5 of Table 1). If

Rk
(x) = ∅, then x is an isolated vertex; for this reason, Rk

(y)

inserts vertex x as its new head under Dk’s request . In
this case, beside the update of x, y, Rk

(y) and Dk , the zz-
structure O has to delete x from the set of isolated cells. As
in the previous case the operation ends with a message that
is forwarded up to the session actor SA. The case Rk

(x) 6= ∅
and Rk

(y) = ∅ (line 6 of Table 1) is analogous.

Case Rk
(x) = Rk

(y) = ∅ (line 7 of Table 1). If both x and

y are isolated cells, Dk will create a new rank Rk
(xy). This

operation requires an update of the cells x and y, of the zz-
structure O and of dimension Dk itself . Also in this case
the operation ends with a message that is forwarded up to
the session actor SA.

Case Rk
(x) 6= Rk

(y); Rk
(x), R

k
(y) 6= ∅ (line 8 of Table 1).

In this case, x is the tailcell of its rank Rk
(x) and y is the

headcell of its rank Rk
(y). The merge operation is carried

out by Dk that sends a request of inglobing Rk
(y) into Rk

(x).

When Rk
(x) acknowledges this operation, then Dk destroys

Rk
(y), x and y update their information and the operation

ends with a message from Dk to the session actor SA.
The proof of correctness of this algorithm is omitted for lack
of space.

5 Conclusion

In the first part of this paper, we have provided a formal
graph-based description of virtual organizations, in terms of
zz-structures and of computational agents. We have shown
how the use of actor-based technology may be helpful in
simplifying and enhancing distributed computing capabili-
ties, and in particular enhancing interoperability in grid sys-
tems.

References

[1] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, 1986.

[2] J. Bradshaw (ed.). Software Agents. American Asso-
ciation for Artificial Intelligence, MIT Press, 1997.

[3] H. Casanova. DistributedComputing Research Issue in
Grid Computing, ACM SIGCAT News, 33(3), pp. 50-
70, 2002.

[4] S. Canazza and A. Dattolo. Open, dynamic electronic
editions of multidimensional documents. IASTED
Proc. of EuroIMSA, Chamonix (France), March 14-16,
pp. 230-235, 2007.

[5] A. Dattolo and V. Loia. Distributed Information and
Control in a Concurrent Hypermedia-oriented Archi-
tecture. Int. Journal of Software Engineering and
Knowledge Engineering, 10(6), pp. 345-369, 2000.

[6] P. Flocchini, B. Mans, N. Santoro. Sense of Direction:
Definitions, Properties and Classes, Networks, 32(3),
pp. 165-180, 1998.

[7] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. In-
ternational Journal of High Performance Computing
Applications, 15(3), pp. 200-222, 2001.

[8] M.J. McGuffin. A Graph-Theoretic Introduction
to Ted Nelson’s Zzstructures, January 2004,
http://www.dgp.toronto.edu/ ∼mjmcguff/research/zigzag/.

[9] C. Hewitt. Viewing control structures as patterns of
message passing, Artificial Intelligence, 8(3), p. 323-
364, 1977.

[10] F. Manola and C. Thompson. Characterizing
Computer-Related Grid Concepts. Object Servicesand
Consulting, Inc., 1999.

[11] A. Moore, J. Goulding, T. Brailsford and H. Ashman.
Practical Applitudes: Case Studies of Applications,
Proc. of 15th ACM Conf. on Hypertext and Hyper-
media - HT’04, August 9-13, Santa Cruz, California,
USA, pp. 143- 152, 2004.

[12] T.H. Nelson. ZigZag (Tech briefing): Deeper Cosmol-
ogy, deeper documents. Proc. of the 12th ACM Conf.
on Hypertext and Hypermedia - HT’01, pp. 261-262,
University of Aarhus, Denmark, August 14-18, 2001.

[13] T.H. Nelson. A Cosmology for a different computer
universe: data model mechanism, virtual machine and
visualization infrastructure. Journal of Digital Infor-
mation, 5(1), article No. 298, 2004.

[14] J. J. Odell, H. V. D. Parunak and B. Bauer. Repre-
senting Agent Interaction Protocols in UML. Agent-
Oriented Software Engineering, P. Ciancarini and M.
Wooldridge eds., Springer, Berlin, pp. 121-140, 2001.

[15] M. Parashar and J. C. Browne. Conceptual and Im-
plementation Models for the Grid. Proc. of the IEEE,
93(3), pp. 653-658, 2005.


