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ABSTRACT 

This thesis proposes a new, highly generalised and fundamental, information-modelling 

framework called the TRM (Ternary Relations Model). The TRM was designed to be a 

model for converging a number of differing paradigms of information management, some 

of which are quite isolated.  These include areas such as: hypertext navigation; relational 

databases; semi-structured databases; the Semantic Web; ZigZag and workflow modelling. 

While many related works model linking by the connection of two ends, the TRM adds a 

third element to this, thereby enriching the links with associative meanings.  The TRM is a 

formal description of a technique that establishes bi-directional and dynamic node-link 

structures in which each link is an ordered triple of three other nodes. The key features that 

makes the TRM distinct from other triple-based models (such as RDF) is the integration of 

bi-directionality, functional links and simplicity in the definition and elements hierarchy. 

There are two useful applications of the TRM.  Firstly it may be used as a tool for the 

analysis of information models, to elucidate connections and parallels. Secondly, it may be 

used as a òconstruction kitó to build new paradigms and/or applications in information 

management.  The TRM may be used to provide a substrate for building diverse systems, 

such as adaptive hypertext, schemaless database, query languages, hyperlink models and 

workflow management systems. It is, however, highly generalised and is by no means 

limited to these purposes. 
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C h a p t e r  1 -  

1 INTRODUCTION  

 

 

 

 

 

òGeneralizationó or òUnificationó is what many scientists from many fields of human 

knowledge have targeted, particularly in the theoretical sciences, from the recent attempts 

of physicists like Stephen Hawkins [96] to the universal model of Ken Wilber [200] to 

explain almost òeverythingó in this world. The philosophical motivation for those scientists 

to look for such a global theory is that in a universal scale, there must be only one truth 

that can explain all the true facts in this world. 

The domain of this thesis is much smaller than such universal theories, moreover, it is not 

as purely theoretical as those. Also the unification in this thesis is neither an achieved nor a 

targeted goal, but it is a just an approach to target or achieve some results. However, the 

motivation is still the same.  

If a unified theory of physics can explain an existing physical phenomenon and predict the 

happening ones, then by analogy, a unified information model in IT domain may help to 

explain the similarities between existing systems and to build new systems.  

1.1 Background 

Early computers were only for computing but now they are an integrated ðif not essential- 

part of human life. What the today computers can do over the traditional computing is 

managing òinformationó, and most of the today computer systems are in fact, 

òinformation managementó systems. Before providing the dealt problems, questions, aims 

and objectives of this thesis, it is necessary here to have a touch of the challenging world of 

òinformationó terminology in the computer scienceõs literature. Also the importance of a 
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unifying approach will be explained to address some problems and answer some 

fundamental question in the information management community. 

1.1.1 Information and information Model 

In the field of information science and knowledge management, the terms data, 

information, knowledge and wisdom are often considered to make a DIKW pyramid or 

hierarchy proposed by Russell Ackoff in 1989 [11, 157, 166], as illustrated inFigure  1-1.  

For the description of data as the basic layer, Ackoff's view in [11] is that Data is raw; it 

simply exists and has no significance beyond its existence (in and of itself). It can exist in any form, usable 

or not. It does not have meaning of itself. 

On top of the data layer, òinformationó adds context to data, knowledge adds òhow to 

useó to the information. The term of information may be used in different contexts in the 

field of computer science, and thus it is very difficult to find such a general definition. The 

main thing that makes information different from any kind of raw data is the role of 

human perception. Information is sometimes defined as anything that a human being can be 

interested in [125], or as any represented pattern [98]. The term of knowledge is particularly 

difficult to define, as reviewed in [174]. In that review, a working definition of knowledge is 

proposed as the high-value form of information that is ready to apply to decisions and actions. For the 

purposes of this thesis, knowledge is considered to be the meaningful structure of information. 

Briefly, Information is the structured form of raw data that can be interpreted or put into 

some context.  Knowledge is the interpreted and meaningful structure of information that 

can be use to make decisions. Wisdom then adds òwhen to useó elements and the decision 

making and reasoning skills in a time-dependent context on top of the gathered knowledge.  

 

Figure  1-1: DIKW pyramid [97] 
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Also in [85], the layer of òunderstandingó is inserted between wisdom and knowledge 

layers, which includes the analyze and synthesize processes in order to reason or make a 

decision or reasoning.  

It may be useful to illustrate the above hierarchy in Figure  1-2. 

Some related works have criticized DIKW hierarchy to be not a perfect explanation. An 

opposite idea is that the relation between data, information and knowledge is not 

directional and hierarchical at all. As evidence, building relations to make information out 

of data is not possible without knowledge, and that the knowledge is not meaningful 

without knowing the òknoweró [43]. Another work [75] focuses on the òholisticó nature of 

data, information and knowledge and that the relationship between them may be explained 

by òmetaós not by linear dependencies. 

According to the above reviews, defining data, information and knowledge is a challenging 

argument. It may be impossible to draw strict lines between data, information and 

knowledge and they are interchangeable in many contexts. As evidence, a structure of 

information may be itself an information building block in another context.  

In this thesis, the DIKW hierarchy with some sort of flexible and fuzzy borders is generally 

accepted. It is also useful to have a working definition for the term of òInformation 

modeló.  It is defined here as the conceptual and/or logical way that a computerized system uses to 

transit from data to information, as defined in DIKW hierarchy. According to the DIKW 

illustration of Figure  1-2, this definition is almost equal to òhow a system understands the 

relationsó.  

 

Figure  1-2: Transition between data, information and knowledge in DIKW hierarchy [85] 
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1.1.2 Information Modelling and Relations 

The defined òinformation modeló exists in any information management system 

(practically) or information management paradigm (theoretically). This thesis considers a 

number of information management paradigms to be candidates of the mentioned 

òinformation model unificationó. Since the concept of òrelationsó has shown to be the 

main issue in an information model, then the unification is mainly about unifying how to 

relate pieces of data to make information (or in a wider definition, to relate simpler pieces 

of information to make more complex ones).  

It is noticeable that the term òrelationó has also been used in the Relational Databases 

Theory in a set-theory mathematical context [58] meaning a collection of related records of 

data, like a table 1. This shall not be confused with the òrelationó term used in this thesis 

hereafter. This term is used in this thesis for its pure meaning, as something having 

relationship, as in relating things together. 

It is possible to rethink some of the known information modelling paradigms, in terms of 

what and how they relate together, as follows: 

1. Making relations between pieces of data to make tables and relating tables to build 

databases.  

2.  Making relations between nodes of information by hyperlinks, to build a hypertext 

system. 

3. Making relations between pieces of data and/or metadata in a textual and semi-

structured manner to build XML listings. 

4. Making semantic relations between Web resources to build the Semantic Web. 

5. Making relations between cells in a multi-dimensional hyperspace to make ZigZag. 

6. Making relations between tasks, actions and decisions to build a workflow 

management system. 

                                                 
1 In that reference, Codd defines the term òrelationó as Given sets S1, S2, é , Sn  (not necessarily distinct), R is a relation on these 

n sets if it is a set of n-tuples each of which has its first element from S1, its second element from S2, and so on. More concisely, R is a subset 

of the Cartesian product S1  X  S2 X é X Sn 
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More details on each of the above systems will be provided in chapter 1, but they have 

been counted above to show the motivation of selecting these systems to be studied in this 

thesis. These systems may be mostly different in terms of look and applications, but they 

are similar in establishing some relations.  

1.1.3 Questions and Problems 

When researchers from different domains of the information management community get 

together in conference bars, one of the main topics of debate that almost always comes up 

shortly after the "my system is better than your system" conversation, is the "your system is 

really the same as my system" conversation. For example, people who work on ZigZag are 

often told, in no uncertain terms, that ZigZag is "merely" a different take on the Semantic 

Web or that it is XML in heavy disguise. 

Although many of the major paradigms of the information management superficially look 

to be very different, on a deeper level they do have a lot in common ð they are addressing 

many of the same issues, and utilising many of the same techniques to do so. They all 

divide information into independent pieces of data (a set of nodes) and they all associate 

these nodes with each other (a set of links). This is called ònode-link structureó in this 

thesis. 

The simplest node-link structure is the binary model, where each two nodes can be simply 

connected by means of a link. However, a limitation of the binary model is its inability to 

express the purpose of a link, either for human or for machines. This is not essential for 

the technical implementation, as evidenced by the number of systems that offer links 

without any indication of their purpose (the Web being a prime example), but the purpose 

of the link, its reason for being and its semantic implications are nowhere represented in 

the binary model. Knowing that two piece of information are connected -without knowing 

by which mean they are connected- may not be enough to transit between data to 

information, and from information to knowledge in DIKW hierarchy (section  1.1.1). This 

will be explained more in chapter  2. As an example, without any indication of why a link 

should be followed in a hypertext system, a user could easily waste time exploring 

irrelevant links.  In extremis he or she might even give up on the hypertext and go to a 

search engine for a more rapid answer to his or her needs. 

There are many information management paradigms such as ZigZag and the Semantic 

Web which incorporate an awareness of òthe whyó of a link. These sorts of systems are 
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more likely to fit into DIKW hierarchy. It will be shown in chapter  2 that more enriched 

links (with typing, semantic elements, etc.) can produce more knowledge-oriented systems. 

A logical successor to the binary model is to use a ternary approach ð where the relations 

consist of not just the two linked nodes but also a third node, which represents the link 

between them. The ternary version of the node-link structure, which is developed in this 

thesis, is exemplified by a link that connects three arbitrary nodes in an ordered manner. 

So, a link originates from a node, passes through another node and is terminated in a third 

node. This ternary approach is not new, but it has not previously been used in this way to 

unify the fundamentals of different paradigms in the information management community. 

A known special case to such a node-link structure is the directed labelled graph, whereby a 

separated node of information is demoted to a label and is used just for describing a binary 

link. An obvious difference is that a label can no longer be involved in any other link. 

As a summary, the focused problems are: 

1. Some information paradigms have limitations to completely fit into DIKW 

hierarchy. 

2. Many cases of isolating an information system paradigm from others exist because 

of ignoring their commonalities. 

And the main questions are: 

1. Is there any generalized information model that firstly can satisfy DIKW and 

secondly the studied different modelling paradigms are considered to be special 

cases of that?   

2. Finding that model, can some new solutions be found to communicate between 

the studied information systems in their information modelling level?  

3. Knowing that different paradigms are special cases of the found model; can some 

new information management paradigm be thought to be directly based on it, 

particularly using the most of the found model? 

By an analogy to the unified force theory [96] that physicians are developing, the above 

three questions may have some equivalents like: 1) Can a unified force be found that 
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gravity, electromagnetic and atomic particle forces are special cases of that? 2) Can those 

three fundamental forces be interchangeable; and 3) Can some new physical system be 

thought that uses that òX-forceó directly? 

1.2 Aims  

According to the explained approach in the previous section, the aims of this thesis are:  

1. To find a unified and simple information model for the different studied information management 

systems.  

2. To investigate how the found information model can be used to bridge over some known 

information management systems.  

3. To investigate the potential of the found model in making new paradigms and/or information 

management systems, that may not be known or formalized before. 

1.3 Objectives  

For achieving the aims mentioned in the previous section, the objectives are considered to 

be:  

1. A top-down study method: To have a unifying approach in studying the related works 

in a knowledge management context. The studied related works are: 

a. The Relational Databases 

b. The Semi-structured Databases and XML 

c. Hyperstructure Links 

d. The Semantic Web 

e. ZigZag  

f. Workflow Definition Models 

The main reason for selecting the above set of related models is their similarity 

in fitting to a node-link structure (as explained in section  1.1.2). They are all the 

commonly used paradigms in the hypertext and information management 
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communities. The model developed in this thesis does not rely on the 

specifications of the above six approaches ð however it will be shown that it 

defines an abstract model which underpins the above paradigms, and indeed 

any other node-link structure approach in information management. 

During this related work study, different thoughts, advantages and 

disadvantages will be studied, together with some unifying òternary-basedó 

rethinking. Also the concept of òknowledge-orientationó will be provided to 

investigate each paradigm in its potential to be used as a òknowledge transfer 

mediaó. Particularly, in studying the hypertext links, different approaches to use 

hyperlinks to build knowledge-oriented hypertext will be reviewed. 

2. Forming the TRM: To define and formulate the found fundamental model as the 

òTernary Relations Modeló or òTRMó in the most generalized way so it can cover 

the studied information models. It will also be considered that the targeted 

information model is not known from the beginning and also it may or may not be 

generalized in a wider context than the studied systems. TRM will be defined as 

static and dynamic versions and for each one a formal description will be provided. 

The definition of TRM shall be both very simple and very general to be able to be 

a useful unification. Moreover, a layered approach will be proposed to explain how 

TRM fits in with other related works. 

3. A bottom-up study method: To introduce three new information management threads 

on top of TRM, as follows: 

o A New Schemaless Database Paradigm 

o A New Hypertext Navigation Model 

o A New Workflow Definition Model 

The TRM in this part is considered to be an òinformation model construction 

kitó and this group of objectives is directed to search for the ability of the TRM 

to build new paradigms and systems. For each one of the above, it will be 

shown how TRM can partly or wholly be used to build new systems.  
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For the first thread, the problems of associating strict schema in structured and 

semi-structured databases and the imposed limitations to handle real-life 

information will be studied, then by using the TRM formulation, two methods 

of using tables or XML to build databases without any associated schema will 

be demonstrated. A TRM specific query language will be also proposed 

together with its implementations in SQL and XQuery.  

For the second thread, TRM is considered to be an extension to binary 

navigational models, in which the concept of òbinary linksó may be extended 

to òternary linksó. Through demonstrating a developed system, it will be shown 

how ternary links can be used to enrich or adapt hypertext systems. Also the 

similarities and differences between the Ternary Relations Model and RDF 

data model used in the Semantic Web will be discussed. 

For the third thread, workflow definition model is considered to be a new area 

to apply TRM theory to, especially by considering dynamic and bi-directional 

properties of TRM. Also a demonstration of a workflow system developed on 

top of TRM will be provided. 

1.4 Structure of the Thesis 

According to the three objectives mentioned in the previous section, chapter 2 is the place 

of the top-down study method, chapter 3 is the place of forming TRM and chapters 4 to 7 

are the places for the bottom-up study method.  

During the bottom-up study, chapter 4 develops the New Schemaless Database Model, 

chapter 5 develops a New Hypertext Navigation Model and chapter 6 develops a New 

Workflow Definition Model. Finally chapter 7 uses the idea of chapter 6 in a system 

development case study.  

The discussion in chapter 8 reviews the TRM development and practice in an integrated 

method to reach the final conclusion about the rationale of the TRM and to overview the 

possible future works. 
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1.5 Contributions 

The contribution of this research can be listed as follows: 

1. Extraction and formalization of the TRM as a substantial information model, 

providing a tool to define, interconnect and analyze different information 

management approaches for the first time. 

2. The applications of TRM in hypertext navigation, by proposing a new modelling 

framework for hyperlinks. 

3. The applications of TRM in database theory, by introducing a new class of 

schemaless databases. 

4. The applications of TRM in the workflow management systems, by defining a new 

extended framework for defining workflows, supported by practical systems. 

This thesis provides its main òproductó as a òmodeló together with a set of design ideas 

for information system designers and users, as categorized in the above 4 items. These 

design ideas which are mostly theoretical can help making new system benefiting from 

the advantages of the developed information model, i.e. interfacing between existing 

model and using its extra conceptual features. It is noticeable than the practical works 

in this thesis are mostly for demonstrations purposes and must not be considered as 

the final products of this thesis.  
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C h a p t e r  2 -  

2 THE RELATED WORKS : LOOKING FOR A COMM ON FOUNDATION  

 

 

 

 

 

In this chapter five major paradigms of current information management thinking ð the 

Relational Databases, Semi-structured databases and XML, the Semantic Web, ZigZag, and 

Workflow Modelsð will be reviewed and all will be directed to a òternary approachó. It will 

be shown that a special kind of node-link structure can be similarly found in those various 

information management paradigms. By doing so an attempt will be made to answer the 

question of òwhether we are indeed all talking about the same fundamental structureó. 

2.1 The Relational Databases 

Today the relational databases are the most common way of using computers to store and 

retrieve information. The relational databases are based on a mathematical model 

introduced by Codd in 1970 [58]. From that time till now, the relational database could 

practically integrate or overlay the existing approaches about how information can be 

stored in òtablesó. Tables consist of rows and columns, which is an intrinsically òrigidó, and 

hence inflexible, Cartesian structure. Nevertheless, the paradigm of the relational databases 

provides one of the most known and consistent method of data management. The main 

components in the theory of the relational databases [55, 56, 58] are: 

1- Relations (a set of interlinked tables) and a set of Constrains applied on them. 

2- Normalization (A formal method about how to optimally design tables and their 

links in order to meet integrity constrains and to avoid redundancy). Details can be 

found in many database textbooks like in [113]) 
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3- A sub-language or algebra (to provide the necessary language for a formal 

approach to store, modify and retrieve information). 

Formally, a relational database has a schema, in which it is specified how the tables are 

designed and interconnected. The database schemas are expressed using a format like 

r1(a,b) , r2(c,d,e) where r  is the name of the table (also called relations in the context of the 

relational databases) and other letters show the column names.  

Linking the tables in an optimal way is what makes the relational databases distinctive from 

any other database system. This is called òrelational processingó in the Coddõs theory and a 

database system that does not support it should be considered as non-relational. 

Interestingly, Codd uses the term of ònavigationó to express the systematic functionality 

for linking between tables:  òThere is a large difference in implementation complexity 

between tabular systems, in which the programmer does his own navigation, and relational 

systems, in which the system does the navigation for him, i.e., the system provides 

automatic navigationó [57]. 

2.1.1 The Common Challenges 

The first challenging issue about the relational databases comes back to the fundamental 

characteristic of tables, which are a rigid structure or rows and columns. They are good 

when one precisely knows which data fields are required for expressing a piece of 

information, but not the best choice for dealing with the irregularity and the dynamic 

properties of the real-life information.  

A certain set of data fields in tables may not be adequate for expressing much real-life 

information. To overcome this problem, two approaches may be used. The first approach 

is to design as many tables as necessary, each with a different data field design to fit a group 

of information, and finally to link these tables. As the number of necessary information 

structures increases in the real-life cases, the tables converge to simpler structures having 

less data fields, and the number of tables increases. The extreme point of this approach is 

the binary decomposition, where the databases is being normalised down to numerous 

binary tables. This process, which is called òbinary decompositionó ðalso known as 6th 

normal form- is theoretically possible but practically difficult to manage, because the 

resources of a database management system will be highly allocated to manage numerous 

links between numerous tables rather than being allocated to data storage and retrieval 
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tasks. As the second approach, one may want to keep the number of tables limited, so 

he/she may design them in a maximal method (predicting all possible data fields in single 

tables). The extreme point of this approach is ending up with a few but large non-

normalized and non-relational tables which consequently increasing the redundancies and 

null values.  

For several decades, any small change in schema design could have been a serious problem 

for database developers, especially for working database systems. No one can stop the 

dynamic and irregular aspects of the client requirements, so the mentioned problem can 

always happen. This may imply deep changes in a working system with all the risks of data 

or efficiency loss. This seems to be a built-in problem of relational databases, something 

that completely comes back to the rigid nature of database tables. 

Null values are also another challenging matter in RDBs. Nulls may cause ambiguity 

because they neither express anything when a piece of data is expected, nor specify which 

of the possible cases have happened: òunknownó or ònothingó? By definition, a record (or 

a tuple in RDB terminology) is a complete piece of information in the context of the 

container table structure. Either the null value is interpreted as ònothingó or as 

òunknownó, a tuple containing a null value handles an imperfect piece of knowledge and 

thus cannot be a tuple by definition.  

Although normalization can provide a method of avoiding null values when it is expected 

to happen, but no database designer can guarantee the availability of all required fields in 

the decomposed tables at data entry time because òunknownó or ònothingó can always 

happen in the real life. Also normalising down to a set of binary pairs may produce a 

numerous number of joined relations which may be impractical to manage. That is why 

fields of RDB tables are -by default- ready to accept null values except for the ones tagged 

as òrequiredó. If one needs to completely avoid null values, he or she will again end up with 

a binary decomposition version of the database.  

Also ònull valuesó are not òvaluesó, but something about values (which is the lack of a 

value). By this view, a null is naturally meta-data. The question then will be òcan a meta-

data sit in a tuple?ó A tuple is defined in RDB theory as a set of tagged data and not tagged 

meta-data. Thus a meta-data in a tuple cannot theoretically fulfil the information gap, and 

the answer to that question is negative. 
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Different approaches to the null values in RDB community has been taken in order to fit 

the null values in the RDB theory, either by changing the interpretation of the null values, 

or by slight changes of the RDB theory. Codd himself extended his RDB theory to include 

òunknownó values, i.e. those which are existing in the real world but we donõt know them 

[55]. A main problem of this approach is violating the Set Theory, which is the basis for 

RDB theory: Simply, if a null (as defined in unknown interpretation) is a member of a set, 

then is that set equal to itself? The answer is not a definite yes because that null value is not 

a static member. A newer version of this approach is building RDB theory based on a 

fuzzy-set theory in order to estimate null values, like in [50]. Another approach is 

interpreting nulls as ònon-existenceó and the problem is again changes to dealing with 

òinformation incompletenessó like in [90, 108]. Null values are even interpreted as the 

combined values of òunknown or non-existenceó like in [178] or òno-informationó in 

[202]. These approaches are still suffering from the mentioned problem of mixing data and 

meta-data. An in-depth meta-data approach to the missing/incomplete information (of any 

interpretation) has been studied in [143]. Also Date and Darwen in [62] provide ideas 

against null values and Darwen in [61] proposes how to practically avoid them in databases.  

From the point of view of this research, it doesnõt so much matter to know whether or not 

the null values can finally fit in the RDB theory. Instead, it is important to know about the 

presence of such research challenges and why it is preferred to avoid the null values in the 

information model provided in this thesis. 

2.1.2 An Example 

The example shown here is a simple bibliography database including some journal articles. 

This example will be re-used in the rest of this thesis on various occasions. Here after 

explaining the example, the non-normalized and normalized versions of implementing it in 

the relational databases will be shown. 

The database includes some journal articles; each article has some authors, a title, a journal 

name and a year of publication. For each article, the number of authors can be 0 to many, 

and the other fields are necessarily single. An example with three articles is shown in Table 

 2-1 (the non-normalized form). 
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Table  2-1: The sample database, non-normalized form 

Title Author Journal Year 

Enterprise-Wide Workflow 

Management 

C. Bussler IEEE Concurrency 1999 

On the Evaluation of Workflow 

Systems in Business Processes 

S. Choenni 

R. Bakker 

Journal of Information 

Systems Evaluation 

2003 

Searching for e-Business Performance 

Measurement Systems 

Null Journal of Information 

Systems Evaluation 

2006 

 

The two problems of the non-normalized form can be observed as redundancies (like the 

repeated name of journal) and null values (like the author name). After the normalization 

process, the tables below are produced. Using the unique identifier fields, the normalized 

form avoids redundancy and null problems.  

Table  2-2: The sample database, normalized form in 4 tables 

ArticleID Title JournalID Year 

ArticleID1 Enterprise-Wide Workflow Management JournalID1 1999 

ArticleID2 On the Evaluation of Workflow Systems in Business 

Processes 

JournalID2 2003 

ArticleID3 Searching for e-Business Performance Measurement 

Systems 

JournalID2 2006 

 

AuthorID Author 

AuthorID1 C. Bussler 

AuthorID2a S. Choenni 

AuthorID2b R. Bakker 

 

JournalID Journal 

JournalID1 IEEE Concurrency 

JournalID2 Journal of Information Systems Evaluation 

ArticleID AuthorID 

ArticleID1 AuthorID1 

ArticleID2 AuthorID2a 

ArticleID2 AuthorID2b 
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2.1.3 The Relational Databases: A Ternary Approach 

There are two possible ways of ternary approaches to the relational databases.  

First, a table can be considered as a set of finite triples: (row number, cell content, column 

name). The constrains representing the links also are triples of (table name, joining field, 

table name). Although this approach has so much redundancies by repeating row number 

and column name for each piece of data, but it is theoretically enough to show that a table 

is built on a ternary node-link structure . 

The second approach is motivated by binary decomposition rules [55]. As shown in the 

example, it is proved that a relational database can be decomposed to a set of finite linked 

tables, each with two columns. Having this, the entire database is convertible to triples of 

(first cell content, table name, second cell content). Again, although this is not practically 

useful to fully decompose a database, the theory is enough for the target of this research. 

This will be re-explained formally after defining the TRM in section  4.1.1. 

2.2 Semi-Structured Databases and XML 

The general term of òsemi-structured databasesó refers to a group of approaches that try to 

avoid the fundamental regularity of tables (described in section  2.1.1). They also have been 

called òSchemalessó or òSelf-describingó databases [10]. However, the term is very difficult 

to define, because what it is not is clearer than what it is.  

When merging databases from different origins started to become unavoidable in the 

recent ten years, especially when the Web facilitated that integration, the term òsemi-

structuredó was referring to some solutions to avoid rigidity of tables in information 

management. When XML was introduced in 1998 by W3C, it soon became the most 

common way to express information in a òsemi-structuredó manner [10, 171]. The obvious 

advantage that makes it common is its wide acceptance as a standard of data exchange on 

the Web, thanks to the textual basis of the language and the easiness of text-processing. 

The XMLõs simplicity, together with its readability by both humans and machines helped 

to make it a global standard, and also to be surrounded by a confusing number of XML-

based standards and languages, such as RDF-XML, XML-Schema, XHTML, etc. XML 

also showed its other major characteristic: There is no separated description of the 
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structure; i.e. XML describes its content internally, thus the term òSelf-describingó has also 

been used for XML [101]. 

In RDB tables, the meaning of data (or meta-data) is expressed in the schema (tables 

design), so a piece of data is interpreted by knowing its location in a certain row, a certain 

columns of a certain table. The good side of this is that if the tables are designed optimally, 

the space required for the database is optimally low, because the schema is stored once and 

serialized data can be mapped into the schema easily.   

In using the semi-structured approaches, the data is described by mixed and repeated meta-

data which has a cost of increasing storage space. The òseparatedó meta-data is now 

changed to some òjointó ones. For example, the labelled graphs are some means of the 

semi-structured data, in which labels carry meta-data and nodes carry data.  

The waste of the storage space is a dark-side of XML which is usually ignored thanks to 

the memory technologies. Most of the XML features are common with semi-structured 

data concepts. However, XML has its own set of problems which the research on semi-

structured data has not yet addressed, considered important or solved [171]. The details of 

these differences are beyond the scope of this review. In this thesis XML is generally used 

as a language to express the semi-structured data. 

In XML, a general syntax is like: 

<element attribute=óxxxó> 

      <sub-elementé> 

            yyy 

      </sub-element> 

</element> 

òElementsó carry the meta-data part of the database, either by name of the elements (also 

known as òtagsó), or by name of the attributes. Data are inside the elements, either as the 

attribute values (like xxx above), or the element values (like yyy above). Elements can have 

sub-elements with all the properties of an element, so XML is equivalent to a tree of 

hierarchical elements. The same structure can be shown as a directed labelled graph [175] 

like the illustration of the above example in Figure  2-1. Some slightly different strategies for 

this conversion have been described in [175]. 
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A XML listing is completely self-describing. For consistency purposes it is usually preferred 

to òvalidateó an XML listing by certain rules. The names of the elements and attributes and 

their hierarchical interconnection are stored separately (using DTD or XMLSchema 

methods) so a mechanism can be used to check the consistency and to qualify a XML 

listing against the specified rules. More details about DTDs, XMLSchemas and XML query 

languages are out of the scope of this thesis and can be found on the World Wide Web 

Consortium website (www.w3.org). 

2.2.1 The Common Challenges 

Using the term òsemi-structuredó for XML leads to assume the existence of both 

òstructuredó and ònon-structuredó aspects for XML. The non-structured aspect (or being 

òschemalessó) is because of XMLõs self-descriptive characteristic and that it doesnõt 

necessarily need an external meta-data to become expressive. According to the 

òstructuredó aspect, XML has characteristics like hierarchy; i.e. building a tree of 

information and putting each piece of information on some nested levels of that tree. 

According to Ted Nelsonõs view [132], the existence of hierarchy is a classical property of 

many computer systems, and is originated by the paper-based look to the computers which 

may prevent a computer system from being more extensible and scalable to be used in the 

real-life applications. Also, XML might be validated and for a validated XML, an external 

schema is required and the self-descriptive characteristic is no longer exists. These two 

issues can potentially threat on the flexibility of the resulted database systems. However, it 

is still absolutely possible to build XML with single level of hierarchy and without 

validation requirement. This type of XML is what will be used in chapter  4 as a storage 

layer for TRM, called TRM-XML. 

 

Figure  2-1: Sample directed labelled graph for XML 
representation 
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2.2.2 An Example 

Recalling the bibliographic database of section  2.1.2, the database can be shown in a 

directed-labelled graph as in Figure  2-2. It is noticeable that new nodes of root and article 

have been added to the database to satisfy a hierarchical design.  

The illustrated graph then can be used to build an XML listing of the sample database, as 

listed in Figure  2-3. 

XML supports using ID, IDREF pairs, which can be used to modify the listed XML in 

order to reduce redundancies, if necessary. This is equivalent to changing the graph to have 

some multi-input nodes. In addition, a schema written in XMLSchema can be used to 

validate it, as listed in Figure  2-4. 

 

 

 

Figure  2-2: The sample database in a directed-labelled graph 
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<root> 
 <article> 
  <author>C. Bussler</author> 
  <title>Enterprise-Wide Workflow Management</title> 
  <journal>IEEE Concurrency</journal> 
  <year>1999</year> 
 </article> 
 <article> 
  <author>S. Choenni</author> 
  <author>R. Bakker</author> 
  <title>On the Evaluation of Workflow Systems in Business</title> 
  <journal> Journal of Information Systems Evaluation</journal> 
  <year>2003</year> 
 </article> 
 <article> 
  <title>Searching for e-Business Performance Measurement systems</title> 
  <journal> Journal of Information Systems Evaluation</journal> 
  <year>2006</year> 
 </article> 
</root>  

Figure  2-3: XML listing of the sample database 

 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 <xs:element name="root"> 
  <xs:complexType> 
   <xs:all> 
   <xs:element name="article"> 
   <xs:complexType> 
   <xs:all> 
   <xs:element name="author" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element name="title"/> 
   <xs:element name="journal"/> 
   <xs:element name="year"/> 
   </xs:all> 
   </ xs:complexType> 
   </xs:element> 
   </xs:all> 
  </xs:complexType> 
 </xs:element> 
</xs:schema> 

Figure  2-4: XMLSchema listing of the sample database 
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2.2.3 XML: A Ternary Approach 

XML can be thought as a series of ternary links between elements, attributes and textual 

values. In an XML tree, there is a hierarchy of elements. The XML hierarchy can be 

flattened to form a ternary node-link structure.  It is noticeable that converting an XML 

listing to a series of directed labelled graphs is a very common way of representing, and 

storing XML information [175]. The directed labelled graph can be thought as a demoted 

version of the general ternary node-link structure, because nodes denoting labels can not 

be reused in any other link. 

It isnõt necessary to use this labelled graph conversion method, instead a more general 

approach may be used to convert an XML listing to a complete ternary node-link structure: 

Each sub-element adds a branch to this hierarchy and connects its body contents to its 

super-element. So an element can be considered to be an association between its super 

element and its body. In the same sense, an attribute name is an association between an 

element and its textual (or referable) contents. This will be described more in section  0. 

2.3 ZigZag 

ZigZag is an information paradigm that has been developed by Ted Nelson over the last 

decade [117, 131]. ZigZag is particularly suited to representing scientific or other real-world 

information that can be difficult to model using paradigms developed for "man made" 

information [121, 122]. Many information models ð in particular relational databases ð 

were developed primarily for business use. Such information can fit neatly into rows and 

columns, and it is generally possible to modify business procedures so that the information 

fits such structures. This is not always the case with information from the real world ð such 

as scientific information. It is not possible to change the structure of a protein or the path 

of a river so that they fit in with the information paradigms intended for other application. 

However, the fluid schema-less structures of ZigZag allow such structures to be modelled 

easily. 

In ZigZag, cells are atomic information units that can be interconnected with directed links 

along dimensions ð which may have meaning or may be arbitrary. A cell cannot have more 

than an originating link or terminating link along any given single dimension (i.e. one in, 

one out). All cells may exis in all dimensions, although they may or may not be connected 

to anything. When a sequence of cells is connected along a particular dimension, that 

structure is called a òrankó. Cells may be transcluded so that they appear in any rank in 
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which they may be required. These simple rules provide a multi-dimensional space which 

can be as intricate and complex as is required by the information that it represents. A 

detailed data structure based on ZigZag, called zzstructure, has been introduced by Nelson 

in [129], with primitives named zzcell, zzlink and zzdim. 

The linked-list of software engineering may be represented by a one-dimensional 

zzstructure and a spreadsheet by a two-dimensional one, although these are simple 

examples. The number of dimensions is not in any way limited, and in practice many 

dimensions are often required for representing real-world information. Another important 

feature is that loops may be constructed by linking two ends of a rank ð something that is 

not possible in a spreadsheet, or many other information structures.  

A great advantage of such an information modelling is that a zzstructure has no schema 

and so the information can be "grown" easily without the difficulty of structural change, as 

opposed to the relational database. Adding new dimensions, cells, and connecting cells 

along dimensions are the only functionalities that are needed to grow the information 

space. Moreover, zzstructures are built using ZigZag itself ð dimensions, links and 

transclusions being themselves stored as cells in the system.  

Nelson's vision of ZigZag includes a user interface as well as an information model [129]. 

However, it is possible to abstract the user interface from the information model, as will be 

shown in section  3.3. The multi-dimensional zzstructure may be viewed in either a two or 

thee dimensional space, using a variety of visualisation techniques. The user may then 

traverse this space by moving a cursor along x, y and sometimes z axes which may 

represent any of the dimensions of the underlying zzstructure. In order to make 

zzstructures independent of any external description framework, ZigZag itself is built 

almost entirely of self-descriptive zzstructures ð in a "turtles all the way down" philosophy 

ð as quoted by Stephen Hawkings [95]. For example, dimension names are stored in cells 

of a particular rank (called d.dim)ð adding a new dimension is simply a question of adding 

a new cell to that rank.  

There are various implementations of ZigZag, which provide different approaches to 

visualisation. The best known implementation is GZZ [110], which has interchangeable 

modular "views" ð each of these determining how two or three user-selected dimensions 

are rendered in a pseudo-3D interface. 
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The way that the multi-dimensional zzstructure can be viewed as a two dimensional space 

(like on the monitor screen) depends on how the user selects visual x and y dimensions. 

The user can traverse between cells in that space by moving a cursor along x and y visual 

dimensions. Also there are different possible ways of mapping zzstructure in a two 

dimensional space. All of these functionalities has been realized by designing GZigZag, a 

Java-based zzstructure platform [110]. 

2.3.1 The Main Challenges 

Transclusion (called cloning in ZigZag) is an important and challenging property of 

zzstructure. This allows a single cell to appear in any number of different ranks. It is 

obvious from ZigZag definition that a single cell can be involved in various links along 

various dimensions, and there is no need to define it repeatedly. The question is how to 

differentiate between each existence of a single cell in different ranks? There should be a 

mechanism to individually refer to each of those existences. Also there should be a 

mechanism to visualize a single cell participating in two different ranks if both are being 

visualized in a two dimensional space. Because of these reasons, zzstructure allows defining 

a zzcell once, and use its clones in different positions. Clones represent the main zzcell with 

all of its associated data, but with different references. The cloned zzcells are different cells 

in zzstructure, and they are connected to each other along a special dimension called d.clone. 

The main cell is positioned at the head of such a resulted rank. Clones appear in the 

zzstructure as though they are separate cells, although there is actually only one cell being 

represented in many different contexts. 

There are two other challenging issues in data manipulation in ZigZag, both about how to 

map information on ZigZag topological principles. 

The first issue is the main restriction of ZigZag on having a single right-hand and a single 

left-hand cell along a single dimension, which consequently makes the use of transclusion 

necessary. ZigZag has no mechanism for a establishing direct one-to-many relationships, 

so that relationship must be broken to a number of one-to-one relationships to the cloned 

cells, which has its own disadvantage of resource waste. Alternatively, the òhead-cell 

mechanismó can be used. In head-cell mechanism, a rank of cells is interpreted as a one-to-

many relationship between the first cell (head) as one side, and the rest of cells as the other 

side of the relationship. This is the same mechanism that has been used in zzstructure to 

relate a cell to all of its clones along a dimension called d.clone. The disadvantage of head-
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cell mechanism is that it is based on a òconstitutionó not on the topology. For instance, 

changing the order of cells along a dimension (except for the head cell) has a deep 

topological meaning on data, but has no meaning in establishing a one-to-many 

relationship in head-cell mechanism. Other similar alternatives are also possible, like 

making a rank of all related cells from many-side and linking the one-side cell to the head 

of that rank along a second dimension. This has also the same disadvantage and ambiguity 

as the head-cell mechanism. 

To address the mentioned problem of one-to-many relationship in ZigZag, a detailed 

discussion has been provided in Appendix B. The main idea in that appendix is to keep the 

freedom of data manipulation in ZigZag, while not entering the Cartesian environment of 

the relational database, and still have the choice of establishing direct one-to-many 

relationships. The proposed solution consists of ZigZag elements plus another concept 

which is called Macro-cells. The result is no longer ZigZag.  

The second issue is the ambiguity of basic ZigZag elements. There is a constant need for 

additional information or constitutions in order to understand the real meaning of a 

topology in ZigZag. The mentioned ambiguity of using head-cell mechanism to express 

one-to-many relationship is an example. More generally, if A, B and C are forming a rank, 

the meaning of the relationship between A and B is not always same for B and C. Only a 

subset of dimensions can have clear meaning when joining more than two cells, depending 

on the concept of linking. For instance, the dimension of d.age can not be used to link more 

than two cells, while the dimension of d.son may accept more. The other ambiguity is the 

meaning of a reverse links in ZigZag. Even the meaning of direct link is not always clear. 

For example, while the dimension of d.son can implicitly express the meaning of d.father, 

there is no mechanism to relate these two reverse meanings to each other. 

2.3.2 An Example 

Recalling the bibliographic database of section  2.1.2, the illustration of that database in 

ZigZag will be provided here. Illustrating a zzstructure on paper is difficult because ZigZag 

is intrinsically multi-dimensional and does not sit well with the two dimensions of paper. 

However, using the same visualization techniques as used in GZZ, Figure  2-5 shows how 

that database might be represented in zzstructure. Here, three articles are linked as a rank 

along the d.article dimension. Each article has a title linked to it along the d.title dimension. 

There is no need for cloning here, because each title is unique and each article only has one 
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title. Each article is linked to each author along the d.author dimension, but where there is 

more than one author the article is cloned (there is still only one article, but it is 

represented in the context of each author). When an article is cloned it is linked in a rank 

along the d.clone dimension. The journal in which the article is published is linked to each 

article along the d.journal dimension, being cloned as necessary. Each journal is unique 

(there is only one "Journal of Info Sys"), but each journal publishes many articles, so in this 

zzstructure the journal is represented in the context of each paper, and again linked in a 

rank along d.clone. 

It is important to imagine all of the 2 or 3 dimensional views as different looks on a same 

space. Also because cloning needs a separate dimension (d.clone), it has always been 

selected as z-dimension (clones are shown by dotted lines). For consistency, two 

dimensional views are used if no cloning was necessary.  

 

 

Figure  2-5: The sample database in Zzstructure 
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2.3.3 ZigZag: A Ternary Approach 

Dimensions are the key elements in ZigZag that are utilised to express and aggregate links 

between nodes. Thus the structure has high informational strength, and associative 

meanings are significant. Since links in ZigZag are meaningless without specifying the 

dimension, ZigZag may be easily expressed in terms of ternary relationships: A zzstructure 

may be reduced to a set of triples. Each triple consists of an originating cell, a dimension, 

and a terminating cell. All cells and dimensions must then be defined in these terms. Thus a 

link in a zzstructure is set of three nodes: the left-node, a dimension and the right-node. 

Using this approach, it is possible to provide a formal definition of ZigZag as follows: 

ZigZag is a triple of (C,D,Z) where: 

C: Set of all cells 

D: Set of all dimensions 

ZË C ³ D ³ C 

For each (x1,d1,y1) Í Z  , (x2,d2,y2) Í Z  

  If x1=x2 and d1=d2 then y1=y2 

 If y1=y2 and d1=d2 then x1=x2 

The last two line of this definition guarantees the uniqueness of linking cells along a single 

dimension. The first condition checks any two triples, to see whether they have the same 

originating cell and the same dimension, and if so, then the terminating cell must also be 

the same. Similarly, the second condition checks any two triples, to see whether they have 

the same terminating cell and same dimension, in which case the originating cell must then 

be same. Since there are no repeated members in a set like Z, being same in three elements 

means that two triples are in fact one single triple. 

Zzstructure allows us to have an integrated approach to dimensions, because they are in 

fact stored in cells. By this view, if cells in zzstructure can represent dimensions, then the 

above definition can be changed to:  

Zzstructure is a pair of (C, Z) where: 

C: Set of all zzcells 

ZË C3 

For each (x1,d1,y1) Í Z  , (x2,d2,y2) Í Z  

  If x1=x2 and d1=d2 then y1=y2 

 If y1=y2 and d1=d2 then x1=x2 
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This is not the first attempt to define zzstructure in formal terms. McGuffin et al. in [116] 

and [117] have used various approaches to define zzstructure using graph-oriented, list-

oriented and space-oriented techniques. The ternary definition of zzstructure that has been 

provided above is set-oriented, compared to the graph-oriented definition provided in 

[116].  

There are other issues about this ternary approach to ZigZag paradigm that must be 

studied after defining the TRM. These issues will be studied in section  0. 

2.4 Hypertext Models and Navigation  

An almost universal feature of different definitions of hypertext is the non-linearity of 

structure [21]. The non-linear characteristic of both reading and writing in hypertext was a 

part of Nelsonõs original definition [128, 130].  Various definitions of hypertext are 

reviewed in [20],  and the one used here is òan interconnected structure of information which can 

provide non-linearity in reading and writingó. Another definition that can be helpful in the 

direction of this thesis is òHypertext is the authoring and use, by people or machines, of associative 

relationships among information nodes.ó [88]. This clearly defines hypertext in the context of 

node-relationship structures. In this thesis, the terms òHypertextó and òHypermediaó are 

considered to be interchangeable because the type of media (textual, visual etc.) doesnõt 

make any difference in relating them together in the context of this thesis. 

When the interconnectivity of information is considered (like in hypertext systems) nodes 

are the separated and abstracted pieces of information that can be interconnected in order 

to express another pieces of information. Thatõs why in the context of the TRM, as will be 

described in section  3.1, a relation is itself a node. 

In the context of hypertext systems, the working definition of link is also similar to that 

described in [20] as a òtrigger plus the retrieval action performed when that trigger is activated". In this 

thesis a link is considered to be a hypertext feature which provides the functional use of the 

interconnection. 

The associative meaning of a link, or simply the association, is defined here to denote òany 

implicit or explicit relationship between two nodes of informationó. This may or may not 

denote semantics, depending upon the context.  
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According to the mentioned definition of hypertext, node and link, hypertext has the 

potential of expressing knowledge through a node-link structure. This structure has been 

modelled from several aspects, because hypertext systems have two human and technical 

sides, each one having authoring and reading sides. Reviewing the developed hypertext 

models is out of the scope of this thesis. Instead, some of the developed linking methods 

are studied in this section, which may or may not be a part of a general hypertext model. 

Although the link structure looks clear in meaning, it is interesting to know that there is still 

no general òlink modeló for hypertext systems, which is an information model to manage 

links, as mentioned by Carole Goble in her keynote address to the HTõ07 [88]. Also she 

considers the main missing part of such a link model to be a link navigation model, which 

models the way users navigate between nodes of information. According to the definition 

of hypertext used above, this navigation model shall ease a non-linear reading and writing 

through a node-link structure. Also because hypertext is defined to be potentially a 

knowledge system, a well-modelled navigation shall provide a good media for transferring 

knowledge between authors and readers through navigation.  

In the rest of this section, the concept of Knowledge-oriented Hypertext will be explained in 

section  2.4.1. Then in sections  2.4.2 to  2.4.5 some related approaches to hypertext links will 

be studied, varying from implicit modelling of òassociationó to explicit ones. Finally in 

section  2.4.6 the studied related works are reviewed again from a new point of view in 

order to justify it in the main direction of the thesis. 

2.4.1 Knowledge-Oriented Hypertext 

Based on the provided definition of hypertext and knowledge, a hypertext system has a 

potential of being a knowledge transfer system, because hypertext and knowledge are both 

based on a node-relationship structure. Here the term òKnowledge-oriented hypertext 

systemsó is defined as those that are designed to provide an optimum knowledge transfer 

while being traversed. Most studies of such systems have focused either upon the use of 

hypertext functionalities to build a knowledge system, or through the incorporation of 

knowledge system characteristics into an established hypertext. In this thesis, these two 

areas are not considered to be separate, but are instead realized as a single system. 

If the link structure is a key place for accommodating knowledge in hypertext, then the 

meanings of association between the source and destination of each link have the highest 

importance in knowledge-orientation. This is because without clear associative meaning in 
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navigation, discerning the intention of the author, extracting what information items the 

system contains and determining how they are connected puts far too much interpretation 

responsibility, and hence cognitive load upon the end user [134].  

Thus knowledge-oriented navigation is not only concerned with accommodating traversal 

of the links but also with the discovery of associations [17]. Another interesting approach 

comes from [17] where òlinks do not express meaning by themselves, but express meaning 

through their navigation. It is not in he links themselves, but by navigating through the 

links that the meaning of the links becomes clearó. This highlights that the total behaviour 

of a set of links when navigated by the user forms the knowledge transfer environment. 

Some other works such as [16] use the term òIntelligent Hypertextó for the same concept, 

but it is avoided in this thesis because of the definition of knowledge used herein. 

Knowledge-oriented hypertext can still have all the properties of the other types of 

hypertext system (can be called information-oriented hypertext), if it is not intended to be used 

as a knowledge carrier. Another alternative term is Knowledge-based Hypertext in [17], 

which is òone that is able to explicitly represent and actively manipulate the semantics of its 

informational contentsó.  

In order to reach a knowledge-oriented hypertext, many approaches have been taken by 

researchers, varying from overlaying solutions to fundamental model changes. Arents and 

Bogaerts in [16] count two distinctive groups of approaches.  In the first, knowledge is 

expressed within the hypertext network itself; and in the second knowledge is expressed on 

top of the hypertext network, as a separate layer. They mention that the majority of works 

lie within the first group, indicating that this is due to the similarity and potential of basic 

hypertext model elements to be utilised in knowledge systems. However, the second group 

offers greater promise in integrating knowledge into hypertext systems. They provide a 

hypertext design model called Model-Map-View-Praxis or MMVP architecture to support 

this idea (more details in section  2.4.3). A related two-layer approach integrates hypertext 

into the design of a knowledge-based environment, as exemplified by JANUS [76], in 

which the construction tasks of the system are supported by graphs, and argumentation is 

supported by a hypertext system. Nevertheless, the above separated approaches have many 

overlapping features: for example, the addition of knowledge-links to the standard extant 

links of a hypertext system (exemplified in [44, 89]) acts as an overlying logical layer, while 

still utilising an established hypertext network. 
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2.4.2 Links with No or Implicit Association 

Putting association implicitly in content, or even using no association, is the most common 

approach to hypertext linking, as exemplified by HTML [183]on the World Wide Web. 

Thus in order to effectively navigate a link, a conceptual understanding of the relationship 

must be maintained in the userõs mind [172].  This can be facilitated by the HTML anchor 

text, by the mental model associated to a graphical icon, or even by a previous experience 

of the user in Web navigation. Thus according to the definition of the knowledge-oriented 

hypertext, HTML links show less clarity for the association than expected.  

Spatial Hypertext [167] is an intermediate solution where the association is implicit in link 

structure visualization (i.e. a spatial view illustrates an instant logic of relationships between 

the nodes). Indeed, any overall strategy in organizing links, such as organizing them into a 

hierarchy, is also likely to help the user to effectively visualize the system.  

In WebML (Web Modelling Language) [46], a set of descriptive model, an XML-based 

language and graphical notations is developed for conceptual designing aspects of the Web 

pages. The WebML descriptive hypertext model includes some sub-models: Composition, 

Navigation, Presentation and Personalization. In the Navigation sub-model, the links are 

defined as two types of ònon-contextualó (when they connect semantically independent 

node) and òcontextualó (when the context of the destination node of the link depends on 

the context of the source node). This categorisation is almost referring to the presence or 

absence of what is called òassociationó in this thesis. WebML is developed for designing 

the Web sites (and specially for knowledge systems on the Web [73]) and thus may not be 

used for other non-Web hypermedia systems. In terms of links, it is limited to the Web 

style of linking and may not be used for dynamic links modelling. The association in this 

model is an embedded and implicit element of the WebML links.  

The implicit associations (or no association) approaches above do have potential problems. 

Firstly, It is possible, indeed quite likely, that in many cases the resulting hypertext does not 

engender the same conceptual model on the part of the reader that was intended by the 

author [125]. Furthermore, in most cases these kind of links are more suitable for free 

navigation of information rather than efficient knowledge purposes or semantic retrieval of 

content [106].  
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2.4.3 Rank-Promoted Links 

In the object layer of many classical hypertext models, links are second class objects (as 

either in the older models like Dexter Model [92] or in the recent ones like Hypermedia 

General Meta-model [168]) or dependant objects (like in some of the representations in the 

Binary Relation Model of links [19]). However there exist completely contrasting 

approaches, where the rank of link objects is promoted either by their primacy over nodes 

or alternatively by handling nodes and links as equal-rank objects. Two related approaches 

will be studied here. 

In order to emphasise the structure of hypertext systems, the philosophy of òStructural 

Computingó has been introduced in [135, 136], where the links are considered as first class 

objects in basic design and relationships as the atomic building blocks. This is similar to 

seeing a graph as edge-based rather than node-based. Moreover, a hypertext system is 

considered as just a special case of this general philosophy. A hypertext implementation 

based on the Structural Computing is IUHM (Information Unit Hypertext Model) [127].  

There is also another approach towards upgrading a linkõs order from being a second class 

object. In the Model-Map-View-Praxis (MMVP) [17], explicit knowledge manipulation for 

both nodes and links is emphasized. The idea behind seeing nodes and links as equal rank 

objects is that in MMVP, nodes and links are two abstract objects in lower layers that must 

be instantiated for representation using the upper layers. A link has a navigational 

behaviour which can be used in some similar places, and not simply as a reference to the 

source and destination anchors. Nodes and links are not explicitly stored in the lowest 

(Model) layer of the architecture, but are implicitly extracted from the information units 

and the information semantics in that layer. 

2.4.4 Typed Links 

One commonality in various hypertext models (like in [91, 155]), is the view that a link has 

at least two essential data fields: source and destination. Having only these two fields 

cannot express any kind of intrinsic knowledge, since there is no inclusion of meaning for 

the relationship between the source and the destination, and this is analogous to a sentence 

without a verb. The enrichment of links by semantic meanings has been called as semantic 

linking by some authors [16, 106, 126, 167]. Indeed, the existence of semantically typed 

links has been counted as one of the main evaluation factors in navigational model design 

of hypertext systems [54], an infrastructural component in òthird-order hypertext systemsó 
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[17] and as a new added feature to òthe fourth generation of hypertext systemsó [32]. 

Enriching the nodes and links by semantics is also known to be the underlying step 

towards converting the World Wide Web to the òWorld Wide Knowledge Webó to 

provide semantic filtering/visualization of the Web pages from different perspectives [40]. 

Adding an explicit type attribute to the link feature can explicitly contain the link 

association, or the way two or more nodes are related [54]. The added link type is metadata 

to describe or enhance the usefulness of data [44]. Also link typing researches are not 

always directed to providing semantic links, and they can be for descriptive or more general 

purposes. In the following paragraphs, some related issues and works on link typing will be 

studied. 

HTML 3.2 [182] and later versions support generic type linking: CLASS, REL and REV 

attributes of <A> and <LINK> tags have been designed in order to handle link types. 

Unfortunately this has been rarely used and most of the known Web browsers ignore them 

[32, 40]. It is noticeable that they have been used by stylesheets to change the look of the 

Web pages, diametrically opposed to their original intention. This facility can help users 

and computers to understand various link categorizations, either in terms of their semantic 

or other purposes. REL and REV attributes are used in a bi-directional manner for 

navigational sequencing of web pages, creating structural hierarchy within web pages, and 

for some special purposes such as defining author, copyright, etc. REL and REV accepts 

pre-defined values but CLASS attribute accepts free text for further description of the link 

[32].  

Whether or not Web browsers can use the built-in HTML link typing for presentation, and 

whether or not these types are for semantic purposes, HTML link types have their own 

advantages to help Web searchers (like search engines or Web agents) when HTML 

sources of Web pages are processed independently. This process can help finding related 

Web resources more easily and intelligently. As an additional advantage, some other 

processes can use the link types to analyze and rank the Web pages based on incoming 

links from the other Web pages. A more detailed study about these kinds of search 

methods has been done in [153]. The disadvantages of HTML link typing in supporting 

knowledge-orientation include non-semantic provisional design, the lack of standard 

presentational support by browsers and finally limited types for bidirectional semantics. 
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Also an explicit and formal manner of relationship, named Metalevel links, has been 

proposed in [172] to address the problem of informality in usual HTML links. The 

meaning of a link has been added as a type attribute to the link data model. An 

implementation of this idea is WIS [172], which has the following other advantages over 

conventional websites: bi-directional linking, different views based upon filtering of the 

link types, intelligent searching based on relationship types, provision of a platform for 

implementing workflow systems, and distributed and open architecture. As an example, a 

link type can be expressed as òparent-childó which can be used for an intelligent search 

based on òsiblingó. 

A similar approach is used by Oinas-Kukkonen, in which link types and link keywords 

have been purposed to address another important problem: Many complain they do not know 

where a link will take them? [141]. By knowing the link types, users may have a better way of 

knowing the target prior to navigation. Such links have been named as rich links in [141] 

with some improvement on the systemõs efficiency: preserving the information context for 

the user in addition to better information organization, and benefits in collaborative design. 

Although Oinas-Kukkonen has no suggestion on how to implement such links, a similar 

implementation has been described in [193] in which a link can have multiple destinations, 

distinctive by several link types and the user selects one of the link types from some 

appearing pop-up menus before the link activation. 

Another approach has been taken in the Trellis Model of hypertext [169]. This model is 

based on Petri-net (a widely known workflow analyzing scheme explained in section  6.1.1), 

and tries to benefit from the existing analyzing algorithms which have been developed on 

Petri-nets. In this model, the fact that a transition object intermediates each two places in a 

Petri-net, is mapped into the fact that a link intermediates two nodes of information in the 

hypertext systems. Also the firing process of Petri-nets which transmits tokens between 

places is mapped into navigation which transmits control between documents. Link typing 

can take place by this analogy, because links have as many attributes as transitions, 

including type. The model is not a design model, but a functional model of hypertext and 

this type attribute has only instant browsing meanings, which may or may not have 

associative meanings [81, 170]. 

Another approach is RMM (Relationship Management Methodology) [100] which is a 

framework for object orientated hypertext design. Although in its underlying data model 
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(RMDM) an entity-relationship (E-R) diagram deals with user navigation of hypertext 

rather than its design, RMDM differentiates between navigational and associative links. 

The links in the E-R diagram are meaningfully labelled for both types of links in the 

context of the object orientation. For example, a link between a course and a teacherõs 

name can be labelled as òtaught byó. In the final user interface design, these labels will 

themselves be link anchors inside the documents, i.e. at the end of a page which contains 

the specification of the course. In this view, the links have explicit meanings, but are not 

extracted from the information nodes.  

2.4.5 Links in Open Hypertext Approaches 

The term òOpen Hypertextó has been firstly used in 1989 by Sunõs Link Service project 

[144]. The openness mainly refers to the free access of different applications to òLink 

Serveró as well as documents, so each application can integrate document linking services 

into their standard functionalities. Then the researchers in the University of Southampton, 

have worked on various aspects of the òOpen Hypermedia Modeló and exemplifying the 

idea by developing Microcosm Link Service [63, 79, 93, 186, 187].  

In Microcosm, the user reacts with some òviewersó which can be any document displaying 

application. The heart of Microcosm is a document control system which controls the 

passage of òmessagesó between the viewers, linkbases and òfiltersó. Each of the filters can 

then block or change the message before passing it on. For example if a link source in a 

document is selected by the user, the message of requesting the destination may be passed 

to the linkbase through the filters and be responded by another message.  

 In the open approaches to hypertext, links are logically kept out of the contents of 

documents, in some òlink databasesó or simply òlinkbasesó [63]. Using linkbases can 

provide more flexibility in managing the link structure. For example, the òlinkbasesó can be 

updated, computed, added or adapted independently from the content, as well as utilizing 

some automatic linking algorithms [63]. Also various linkbases are attachable to a single 

document and a linkbase can serve different documents. It also has the benefit of more 

efficient handling of large and numerous documents compared to the embedded-links -or 

closed- approaches.  

In terms of the link structure, managing links in some separated linkbases, allows us to 

have as many explicit modelling elements as necessary for each link, regardless of the 
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contents that the link is going to appear in. Thus the open hypertext approaches may 

provide opportunities for applying explicit association elements to the hyperlinks.  

In the methods of adding computed links and automatic linking, automatic processes 

attempt to enrich the informational structure by constructing new links. This approach is 

very much related to the building of a knowledge-oriented hypertext because the 

automated embellishments of the structure harness external sources of knowledge (e.g. in 

[20]). However, this method may not change the link structural model and the added links 

may still have implicit meanings to the user. Consequently, a lack of direct knowledge 

transfer from the author to the reader may still exist. 

Also in COHSE (Conceptual Open Hypertext ServicE) [44, 89], conceptual metadata 

about hypertext documents is used to add pre-computed links to the pre-existing 

navigational links. The link generator uses several software modules to recognize potential 

anchor points such as ontology services, other external linkbases, RDF repositories of the 

Semantic Web, or some explicit metadata descriptions inside the documents, such as the 

<META> tag of HTML. COHSE can convert a set of conceptually-unlinked documents 

like normal web pages to another set of linked documents. A particular useful application 

of this appears when a single document can be enriched by several types of knowledge, 

each for a specific group of readers.  

Another approach is taken by Bieber in [29, 30] by introducing DHE (Dynamic Hypertext 

Engine) as a method of automatic links addition to hypertext, based on the analysis of 

existing relational databases. These databases are actually sources of supportive knowledge 

and the created links are enrichments of hypertext by those knowledge sources. The 

applied analyzing algorithm (RNA: Relationship Navigation Analysis) is based on the 

internal joins of the relational databases. 

There have been many other descriptions of adding computed links, (e.g. [12, 31, 51, 203, 

204]), all of which attempt to add computed knowledge-supported hyperlinks over the pre-

existing ones. 

Also FOHM (Fundamental Open Hypertext Model) [64, 119] was proposed as a single 

framework for modelling interoperability between several open hypertext standards. 

Because of the generality of FOHM, the òassociationó has been incorporated as a 

modelling element. The set of associations is defined by the Cartesian product of three sets 



- 36 - 

of binding vectors, relation types and structural types. Relation type is itself Cartesian product of a 

set of names and a set of features spaces while the latter is a set of all possible properties that 

must be defined in each binding of an association. The relation type has no direct 

involvement in semantic linking, as it has more functional involvement, distinguishing 

between different behaviours when the link is traversed.  

Another method to use the Web infrastructure as an open hypermedia system is XLink. 

XLink is the W3C recommended method to incorporate links in XML documents [185]. 

XLink are special elements within XML documents that can represent unidirectional links 

between two other XML elements. In addition to the simple one-to-one links, XLink 

support òextended linksó, in which elements can be related in one-to-many or many-to-

many manner. It is noticeable that XLink does not itself produce hyperlinks but uses 

elements of a special namespace (XLink namespace) to notify a reader application about 

the existence of some links. So it is absolutely due to the reader application how to react to 

the XLink elements in an XML document. XLink has been considered as a method to use 

the Web infrastructure as an open hypertext system by greater abstraction of links from 

nodes [15, 106]. By using XLink, each link can have more structured attributes for linkage. 

The attributes of the links which are defined neither in the source nor in the destination, 

are a good opportunity to store the link semantic and/or types. The main linking element 

in XLink is <bind> which has attributes including òfromó, òtoó, òtypeó and òroleó. The 

last two are where the associative elements of a link can be stored.  

However, at the time of writing this thesis, XLink 1.0 (2001) was the only finalized version 

of XLink recommended by W3C and one of the main current issues with XLink is the lack 

of implementation support by the Web browsers. Only the recent versions of Mozila 

Firefox and Netscape have a very limited support for òsimpleó links and no major Web 

browser supports òextendedó links.  

Also Frei and Stieger in [80] have defined a hypertext link to be consisting of four 

components: <t, i, s, d>, where t is the link type, i is a set of link attributes, s and d are 

source and destination node of the link. t is not itself a semantic type of the link, but rather 

a flag that specifies whether the link is of type referential or semantic or at most 

distinguishes several subtypes of semantic links. They mention that the intention is to restrict 

ourselves to a few link types so that their semantics may be understood fully by authors and users, so it is 
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clear that this link typing relies on the userõs mind to interpret the exact meanings of the 

links. 

2.4.6 Hypertext Links: A Ternary Approach 

After reviewing the related hypertext linking approaches, it is observable that the 

òassociationó elements have been considered in several ways, either implicitly or explicitly. 

As a summary, the way that the òassociationó has been modelled can be categorized as 

follows: 

1. Association implicit in structure: Where clear illustration of structure can transfer an 

understanding of the meaning of each link (as in Spatial Hypertext [167]). 

2. Association implicit in the source node: Where observation of the hyperlink together with 

the help of readerõs mental model may express the meaning of links (like in Webõs 

usual links) [172] or even when some separated link anchors in the source node 

express the association (like in RMM [100]). 

3. Association explicit in structure: Where the storage of a link includes some information 

about its meaning (like in XLink [15]). 

4. Association explicit in other nodes: Where the association may be explicitly stored in a 

separated node. None of the studied related works can be explicitly categorized 

under this category. However, the Structural Computing is the nearest one to the 

case of òassociation explicit in other nodesó. There is a possible ternary approach 

to the concept of the structural computing inspired from N¿rnbergõs work in 

[136]1.  

Implicit methods of link associations have the significant advantages of simplicity and no 

storage overhead, but are less desirable from the perspective of knowledge-orientation, as 

                                                 
1 In structural computing, the information tends to be stored primarily in structure and secondly in nodes. The òstructural 

atomsó or bundles have been introduced in as the first class objects.  Data elements of each bundle include a set of ends 

and a set of adjacent bundles per each end. This can be partially illustrated by looking at an edge of a graph as the main 

object which has some ends (nodes), and the next edges are its adjacent through its ends. The resulted model (called 

EAD: Elucidate; Analogize; and Delete) allows bundles with more than two ends, which is impossible to illustrate in 

normal graphs. Instead, Nürnberg propose an alternative bipartite graph in which the nodes are of two types A and B 

and the edges can only link nodes of different types. Then EADõs bundles can be seen as A-nodes and EADõs ends as 

B-nodes. Then a real bundle in EAD is in fact two adjacent edges (ABA or BAB) of this graph, when different 

adjacency selection means having multiple ends. The multi-end nature of the bundles in structural computing is 

implemented by triples of (end, bundle, end) or (bundle, end, bundle). As a conclusion, two-ended bundle are following 

a binary approach while ternary bundles are following a ternary approach. 
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they rely heavily on the readerõs mental model. Where associations are explicit in the 

structure, they are stored in the form of metadata about each link. However, this 

information is not necessarily transferred to the userõs mind through link navigation. Hence 

the advantage of this type of linking lies more in the efficiency of search methods and 

information retrieval that it offers. Sometimes link attributes are used for other purposes 

rather than associative meanings (as in FOHM [119]), and they are usually too restrictive in 

size to store a complete associative meaning/description of a link. By contrast, explicit 

associations in the source node are more suitable for knowledge transfer and for directing 

the userõs mind, although they may not be as efficient as storing them explicitly in structure 

for intelligent information retrieval purposes. Furthermore, the anchors are often too short 

to express full associative meanings (or if this is not the case then the readability of the 

source document is likely to be impaired).  

If associations are stored explicitly in a third node, then there is higher information 

overhead for each link, in comparison with all of the other methods described. However, 

there are a number of distinct advantages to this approach.   

Associations stored explicitly in third nodes can express the available information about 

the link to the greatest possible extent, because all such information is consistently stored 

in other nodes. This method promotes associations from being attributes to full 

navigational information, because in this approach, the association is one of three basic 

elements of a link, with the same rank (sitting alongside source and destination). The 

òattributeó view to the link associations has caused their exclusion from incorporation into 

various navigational models ([19, 20]).  Lastly, this method supports the openness of the 

hypertext systems (where openness is defined earlier in section  2.4.5) because it includes 

management of many link specifications outside of the link structure. As such, a link 

structure in the resulting open hypertext system has only pointers to the real information 

concerning the links and these informational items themselves also being stored as nodes. 

This is hence a higher abstraction of nodes and structure. 

 It is now observable that a complete link and navigation model shall model the associative 

element as explicitly as possible. If association is explicitly modelled in a third node, then all 

of the necessary information about the link is stored in that node, rather than somewhere 

in the source or in the destination.  
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2.5 BRM: Binary Relations Model 

A fundamental work on navigational modelling is Ashmanõs work on the òBinary Relations 

Modellingó or òBRMó in [19, 20]. BRM can cover all of the possible binary navigation in a 

formal method. Although the BRM is a model for hypertext and thus it could be covered 

under section  2.4, because of its special importance as a formal predecessor for the TRM, it 

has been studied individually in this chapter. Although the BRM has been introduced in the 

context of hypertext, it may be studied in a wider context as an information model. After 

introducing the BRM in section  2.5.1, it will be reviewed by a ternary-based look in section 

 2.5.2. 

2.5.1 BRM Link Model 

The BRM [19, 20] is a way of enumerating all the possible ways of implementing link types 

in a hypertext system. It begins by identifying the salient features of binary relations from a 

hypertext point of view. This hypertext sensibility influenced the necessity of considering 

different representations, since the pure mathematical models of binary relations were not 

subject to real-world problems. For example, the volatility of the underlying set of elements 

in a relation, which in a hypertext and Web context, are manifested in implementation 

difficulties such as broken or disoriented links, and link completeness. The BRM abstracted 

out of real-world hypertext systems basic differences in the underlying link creation and 

maintenance processes, which are described in terms of the different representations 

within the BRM. 

The BRM formulates all the possible ways of implementing link types in a hypertext 

system, by considering purely the navigation model, and focuses on general representation 

of binary relations regardless of their applications or visualizations.  

The key features of the BRM are endpoints, links and relations: 

1- An endpoint is any addressable òthingó. 

2- A link is a connection from an endpoint to another endpoint. 

3- A (binary) relation R is a subset of S2 (the Cartesian product of S upon itself) while 

the model space S is the set of all endpoints. 
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Then the BRM considers how relations are comprised, determining that there are three 

features:  

1- The source set ð elements which occur on the left of the relation, the òfromó 

elements;  

2- The destination set ð elements on the right of the relation, the òtoó elements; 

3- The incidences ð marking which of the sources is connected or related to which of 

the destinations.  

Also it also considers how relations are utilised, primarily from a hypertext viewpoint, but 

with more general applicability. It does this through asking a series of ònavigationaló 

questions. Any arbitrary endpoint may be characterized by the following four main 

navigational questions:  

 

1- Source Existence: Is this node (x) the source of any link? 

$(x,*) ÍR 

2- Destination Identification: Where can I go from this node? 

{yÍS | (x,y)ÍR} 

3- Destination Existence: Is this node (y) the destination of any link? 

$(*,y) ÍR 

4- Source Identification: What nodes are linked to this node? 

{yÍS | (x,y)ÍR} 

Questions 1 and 2 represent linking in the usual, òforwardó direction, while 3 and 4 

represent linking in the òbackwardó direction, so that bidirectional linking may be 

modelled. The answers to those four questions determine the various states of the sets of 

static or dynamic endpoints that are required to model the possible implementations of 

hypertext systems. These states are: 
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1- Enumeration ð the explicit naming of all participating elements;  

2- Predicate ð the òfilteringó of a set from a larger set by applying a set-membership 

selection test; and  

3- Expression ð a calculation (parameterised or not) that returns a set of elements.  

An example of the enumeration state is a fixed set of journal titles on a webpage, which 

each one is a link source to its content. An example of the Predicate case is a function that 

determines whether or not the current user has access to the content of the journal. In that 

case, the link set membership is defined by a predicative function and the journal title is 

not a link unless that function returns òtrueó. The example of the Expression case is when 

a function determines the destination of the link, e.g. the journal title can be a link to the 

abstract or to the full text, depending on the userõs access level. The main difference 

between the Predicate and the Expression case is that the Predicate is a logical qualifying 

function, and the Expression is a function having a hypertext node as the output. 

The predicate and expression states are also called òcomputedó , and the computation itself 

can be implemented in two different modes: pre-computed or dynamically computed [20, 

22]. For pre-computed links, the link anchor in the source document is clearly specified 

after all the necessary computations, but in dynamically computed links, the eligibility of 

each node to be source or destination, is computed in run-time on userõs request (like non-

advertised links that are being advertised by hovering the mouse over them). This is 

reflected in the remaining questions that can be asked of a representation in the BRM, 

namely: 

1- Link Existence: Is there a link between these two elements? 

2- Source enumeration: What are all the possible sources of this set of links? 

3- Destination enumeration: What are all the possible destinations of this set of links? 

4- Link enumeration: What are all the links in this set? 

The first of these is not a true navigation question because the identification of both source 

and destination endpoints is already known, the only question being asked is whether there 

is a corresponding pair of entry and exit points between them, i.e. "can one go from here 
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to there?". The last three are not navigation questions involving decisions about if and 

where one can go from a given endpoint, but rather are queries about the whole set of 

links, whose results are independent of the readerõs current position in the data collection. 

Pre-computation of all relation incidences (links) is the application of either a predicate or 

expression to calculate all the participants in any of the three constituent sets of a relation.  

Having established how the defined sets form the relations, and how these may be 

represented, then a comprehensive enumeration of the representations for relations can be 

defined by considering all the possible combinations of possibilities for the sets making up 

a relation. To define that enumeration, one must also pay particular attention to how these 

representations occur in the real-world hypertext systems. These real-world observations 

support many of the theoretical observations, many being motivated by the challenges of 

maintaining valid hypertext links (equivalent to relation incidences) in a highly changeable 

information collection, such as the Web. This is a key limitation of those representations 

that use enumeration for any or all of their constituent sets, and the various representations 

of the BRM are discussed in terms of their ability to answer the navigational questions in a 

volatile and potentially infinite information collection. 

One of the interesting possibilities that one may construct is predicate-expression, named pE 

hereafter, in which the source is nominated for being an endpoint by a computation (the 

non-advertised link source) then another computation takes the source and resolves the 

destination (either in pre-computed or dynamic fashion, as described in [20, 22]). This 

state, which is also called òFunctional Linksó, is a generalization of all kinds of links in the 

BRM.  

In section  5.8, more study on the pE state and the Functional Links will be done after 

introducing the TRM and the TRM-NAV. This will also consider a Turing Completeness 

approach to the BRM and the TRM (section  5.8). 

2.5.2 The BRM: A Ternary Approach 

According to the BRMõs view, the semantics of the links are irrelevant to the relation 

model. The model is not affected by why any two endpoints are linked together, as its 

purpose is solely to characterize how they are linked. BRM excludes the link semantics (and 

more generally, associations) from being a navigational property of a link and leaves them 

as attributes. Also it has been reviewed that in knowledge-oriented navigation, users need 

to master the meaning of their navigational actions. Let us consider an open hypertext 
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system with two different knowledge contexts (i.e. the associations are in two different 

domains). It is possible that two nodes are connected together in both contexts, but 

through different associations. Unlike their endpoint similarity, these two links have a 

significant difference when navigated in two knowledge domains. 

In the context of knowledge-oriented hypertext, the importance of associations is too great 

to be ignored when characterizing a link. In addition, associations are not only attached to 

a navigation action, but also may have functional role. For example, a user may select an 

association choice after selecting a link source. Then the destination is dependent not only 

on the link source, but also on the selected association. It can be concluded that in 

knowledge orientation view on hypertext, some of the whys can be realized as hows in 

navigational modelling. 

Furthermore, there are some areas in hypertext systems, in which navigational behaviour 

can not be covered completely by the BRM. It is predictable that these areas are where 

knowledge expressiveness is highlighted and/or when the structure of the system has more 

importance. The limitations of the BRM in covering such fields are because there is no 

independent characteristic for any relation incidence in the BRM [19].  

Workflow Management Systems (described in section  2.7) are examples of when pure 

binary links are not able to serve user tasks an information system. Considering tasks of 

workflow as nodes of hypertext and its transactions as links, it is possible to build a 

workflow system over a hypertext system. The resulting workflow system has hypertext 

characteristics because it contains not only information about the definition of a process, 

but also provides non-linear navigation between its nodes. The navigation between nodes 

of a workflow is the ability of system to guide the user to go from one node to another 

depending on their decision from some offered choices. In this case, each navigation step 

consists of three parameters: source, decision and destination. This decision-based 

navigation has three navigation elements, which cannot be modelled by the BRM.  

In the process of decision making, the user selects which type of processing they want to 

do on the current work case. Usually the decisions are source-dependent, i.e. the user 

selects their decision from a list of available choices, which are either predefined or 

computable to be available on the source node. However, there are possible source-

independent (or enumerated) decisions, like suspension or jump.  
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Likewise, in the process of destination selection, the user and/or system determine the 

possible destination node(s). The destination can be more than one node, like distribution 

of a task amongst in-charged users. If the user selects a source-dependent decision the 

system determines the destinations (computed), otherwise the user selects the destination 

explicitly (enumerated).  

Zigzag is another example of these BRM limitations, when BRM cannot model a cell-

dimension-cell link of ZigZag.  

The above issues can show a requirement for the extension of the BRM. This extension 

needs to take association into account as an independent node of information. Because the 

BRM may be viewed either as an abstract information model or a hypertext navigation 

model it may readily be extended to provide the TRM as an abstract information model (in 

chapter  3) and a navigation model (in chapter  5). 

2.6 The Semantic Web and RDF 

Many of the documents introducing the Semantic Web, start from this point that the 

current Web is designed to be human-readable, so why not make it computer-readable? 

And the motivation for this question is being expressed as scenarios telling about users 

who wish to do some specific logical queries but no software agent or search engine can 

satisfy them [14, 25-27], [142].  

The basic idea is that the Semantic Web is not a new web, but an extension to it, by adding 

logical tags to the web objects, so the information is re-constructed in a machine-readable 

manner. This makes the web objects responsible for logical queries which come from some 

web agents or search engines, then the Web is searchable not only by its row contents, but 

also by its semantic interconnections [26]. The Semantic Web aims to build world-wide 

network of computer-readable semantics, instead of being human-readable [142]. It is 

interesting to know that the Semantic Web has been named as a hypertext, a 

knowledgebase and a database in different works [89].  

Figure  6-2 shows the multi-layer architecture of the Semantic Web. The URI layer provides 

a global standard for referring to all the Web objects uniquely. The XML layer provides 

syntax, or basic language for describing information in all the upper layers. XML Query 

and XML Schema provide mechanisms to validate and access data written in XML. RDF 

(and RDF Schema) provides a data model (or language, or framework) for describing the 
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Web resources. It is used to write descriptive òstatementsó about each resource, using 

other resources, in the form of resource-property-value triples. The Ontology layer 

provides more mechanisms to logically enrich RDF-described data. OWL is the standard 

language used in the ontology layer of the Semantic Web (RDF and OWL will be studied 

more in the next section). Finally, the upper layers of the Semantic Web provide more AI 

mechanisms to make the web resources semantically reasonable, and the results of those 

reasoning reliable.  

2.6.1  RDF and OWL1 

Among the layers of the Semantic Web, RDF and OWL are the core layers that make basic 

statements about resources. Since RDF uses triples for making such statements, it can be 

focused in this thesis. Although the Semantic Web is usually considered to be a subject in 

the context of hypertext but RDF can be studied in a wider context and be compared with 

the information model developed in this thesis. In this section, RDF and OWL elements 

will be briefly introduced. 

The RDF framework includes two sets of elements: RDF itself and RDF Schema (RDFS). 

Because of the potential ambiguity, when the name òRDF elementó is used, it means the 

first set; otherwise it means RDF as a framework (like in òRDF statementó). The main 

RDF elements are:  

                                                 
1 RDF/RDFS/OWL specifications are directly obtained from three standard XML files which have been recommended 

by W3C to be used as namespace of RDF documents. They are located on these addresses of w3.org website: 

http://www.w3.org/1999/02/22-rdf-syntax-ns, http://www.w3.org/2000/01/rdf-schema and 

http://www.w3.org/2002/07/owl 

 
 

Figure  2-6: Multi-layered architecture of the Semantic Web 
(from wikipedia.org) 
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a) Types (used for instantiating a class) 

b) Properties (used for instantiating a property) 

c) Reifications (how to write statements about statements) 

d) Containers (how to build statement about multiple resources). 

A general RDF statement has the following look in XML: 

<rdf:Description rdf:about=óthisSubjectó> 

 <thisPredicate>thisObject</thisPredicate> 

</rdf:Description> 

It is also noticeable that XML is only an option for describing RDF Model. There are other 

alternative syntaxes, like n-Triples [154] and Notation-3 (N3) [24]. The idea of explaining 

and storing statements as triples is the common approach in all of those languages. 

RDF Schema (RDFS) provides some relations and logics to describe concepts, which RDF 

can use as predefined structures. It is important to notice that unlike XML Schema, RDFS 

is not used for validating an RDF listing, but it is used for adding more functionality to 

RDF as well as providing a namespace for that. An XML listing that contains information 

modelled in RDF has two namespaces: RDF elements and RDFS. RDF elements are used 

for basic concepts (like types and properties) and RDFS for extended concepts (mostly in 

an object-oriented framework, as follows). 

A summary of RDFS names and meanings are:  

a) Classes (some resources can be instantiated or be used for inheritance)  

b) Resources (a class of everything). 

c) Special properties like SubClassOf and SubPropertyOf to build hierarchical tree of 

classes and properties 
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d) Another properties for restriction and validation of RDF statements, like domain 

and range of properties 

e) Some other descriptive property about resources like comment and seeAlso (how to 

describe resources in a free-text formats) 

f) Special classes like Literal,  Datatype and Container to be used in RDF 

OWL is a language about explaining logical relations between resources introduced in RDF 

elements and RDFS. OWL can be used to validate or logically restrict RDF statements. It 

can be considered as an extension to RDFS in a higher logical layer. OWL primitives are: 

a) Equivalence or difference of resources, using properties like equivalentClass, 

equivalentProperty, sameAs, disjointWith, differentFrom. 

b) Boolean class combinations, using properties like unionOf, intersectionOf and 

complementOf. 

c) Logical properties of properties, like TransitiveProperty, SymetricProperty, 

FunctionalProperty. 

d) Property inversion using inverseOf. 

e) More restrictive mechanisms using onProperty, hasValue, allValuesFromé and 

cardinality using properties like minCardinality, maxCardinality. 

The above summary of RDF and OWL will be used in section  5.7 to compare the TRM 

with the RDF, after a TRM definition is provided in the next chapter. 

2.6.2 The Main Challenges 

One of the early promises made for the Semantic Web is building a global distributed 

knowledge base [115]. However, there are some pragmatic difficulties for applying the 

Semantic Web for such a global scope, partially because of dynamic characteristics of the 

global knowledge and the strictness of the Semantic Web in dealing with human 

conceptual models [115]. Two main challenging issues are the ability of the Semantic Web 

to be used with all possible real-life knowledge requirements, and its ability to do that at a 

global scale [14, 112, 115]. Also because a single RDF triple is about relating two resources 
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by a property, there are many unanswered questions about how to use RDF to express n-

ary relations [181].  

From the system engineering point of view, two core challenges on the Semantic Web are: 

1) Re-engineering the task of semantic enrichment for building the web of meta-data: How 

this can be done in a high-speed and low-cost manner? 2) Maintaining and adopting such a 

web, especially considering the dynamic nature of the knowledge: Which knowledge-

acquisition methods and machine-learning techniques can be employed?  And 3) perhaps 

the hardest problem to solve is the òontology mapping problemó, when the Semantic Web 

deals with a multitude of ontologies [14]. 

Also there are not fixed answers to the questions like: How a human-readable fact must be 

written as machine-readable? Who must do that? Is that the author of the webpage or 

some tools? If it is a tool, how trustable it can be? Are all human-readable information is 

convertible to machine-readable? While humans are flexible in rules and reasoning, how 

can machines behave so? How to deal with fuzzy rules? [14] 

The above issues were about the Semantic Web as a whole, and some more specific 

challenges about RDF will be studied in section  5.7.1. 

2.6.3 The Semantic Web: A Ternary Approach 

A similar ternary approach to the Semantic Web clarifies that RDF, as the basic data model 

of the Semantic Web, uses three URIs to build a relation and the upper layers like OWL 

use the built ternary relations to accomplish higher degrees of information modelling.  By 

this look, RDF and consequently the Semantic Web have a great potential to be covered by 

a more general ternary information model. This will be discussed more in section  5.7. 

2.7 Workflow Definition Models 

The subject of this section is primarily a different field of systems than the previous 

sections, but with a deeper look, it also possesses another form of node-link structure 

which makes it a related work to the subject of this thesis. The main related works  on 

workflow modelling will be reviewed in chapter 6.  

Workflow systems technology is a growing branch of IT systems that attracts extensive 

research in recent years. Many of the researches are about unifying the standards, 

modelling and strengthening the theoretical backgrounds. The position of workflow 
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technology now is similar to the position of the database management systems in early 70õs 

when different people were developing different management systems with different 

standards and no unified theory could support those works [3]. 

Processes and workflows have been modelled in several ways and using several notations. 

The theoretical studies on various modelling types of processes can help building better 

process management systems, which can consequently help to automate the processes 

more efficiently, especially in business/industrial processes automation, office automation 

and e-commerce systems. Some of the benefits of using such automated systems are 

improvement in speed, quality, reliability and flexibility [52].     

2.7.1 Basic Workflow Concepts 

Workflow is the sequence of actions or steps used in a process which is usually run by 

more than one involved parties and uses many different resources [104]. Each multiple-

task operation for doing a single goal must have a workflow. Workflows are usually derived 

from set of operation rules. In complex workflows, some process engineers usually convert 

these rules or policies to processes, and then a workflow system can handle this process by 

using computers. Computerizing workflows doesnõt mean leaving computers to do the 

workflow tasks (even if this is possible), but using computer systems to know who must do 

what, and when it must be done.  

There are many advantages and benefits for using automated workflows for business 

processes, such as improvement in transparency and efficiency, better process control, 

management, customer service and responsibility, more flexibility to process changes, and 

establishing paperless and rule-based office environments [42, 52, 68]. Examples are 

applications enterprise office automation [86], e-commerce [71], e-learning [60] and in 

general service industry like finance, insurance, etc. [156, 164]. In the field of knowledge 

systems, workflows help building òrule-basedó knowledge management, and are highly 

combined with concepts of knowledge, especially in representation and solution processes 

[82, 124].  

A Workflow management system (WFMS) is computer support for the design and 

execution of processes [86], dealing with both defining and executing workflows [107]. It 

can completely define, manage and execute workflows whose functions are driven by a 

computer representation of the workflow logic, or a systematic tool for defining and 

controlling a workflow. The Workflow Management Coalition (WFMC) [195] is the 
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leading body in the workflow community and has a standard workflow management 

reference model as shown in Figure  2-7. Flexible workflow models are those with clear 

boundaries between workflow definition and other parts of the model (Interface 1 in the 

Figure  2-7). Other parts can be considered as some engines to be driven by the workflow 

definition.  

Workflow management systems have some characteristics in common with systems 

classified as ôknowledge management systemsõ. Knowledge management ideas can be also 

added into workflow management for better work within a knowledge organization [83]. 

WFMS can actively coordinate work processes, manage any condition that can be 

expressed logically, manage both expected and unexpected conditions and be run on one 

or more workflow engines. It should have a high level of Interaction with participants, and 

where required, should invoke the use of IT tools and applications. 

 

Figure  2-7 : WFMC reference model for workflow management  
[195] 

2.7.2 Workflow Models: A Ternary Approach  

The rationale behind a ternary approach to workflow modelling is that a workflow has a 

ternary node-link structure, both in defining and in running modes. The atoms of 

information in a workflow are some static states that the workflow cases can 

accommodated (nodes or boxes) in addition to some links between nodes that cases use to 

move between nodes (relations or arcs). The arcs are carrying the meaning of a case move, 

so they must be described (by labels or more comprehensively by other nodes). For a 
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single case movement in a workflow, one must be aware of three elements: òfromó, óhowó 

and òtoó. These three elements make the studied models to be covered under a general 

ternary approach. More details of this approach will be explained in chapter  6. 

2.8 Ternary Approach to Other Related Fields 

There is a general concept of having three basic elements for knowledge atoms in some 

other fields of information technology. Even in non-IT fields like in linguistics, this 

concept is evidenced by T-expressions  [84]. T-expressions has been introduced as 

<subject, relation, object> triples and all expressions of a knowledge domain in this theory 

must be modelled so. A òtenseó is stored in knowledgebase as T-expression and other facts 

of a tense are being stored as its òhistoryó. The T-expression representation is recursive 

and also T-expressions can be object or subject of another T-expression through some 

recursive mechanisms [84]. 

Also the Directed Graphs [72], particularly when used as a knowledge management 

methods (like in [124]), are expressed as ternary relations (like in [33]) when an edge in a 

directed graph is a triple of (source, label, destination) and a leaf is a couple of (node, value). After 

defining the TRM in the next chapter, it will be clear that a directed graph can be rewrite in 

the TRM. The difference between the TRM and this schema is that label and nodes are of 

different classes of objects while the TRM treats them in a same way. It is then noticeable 

that the term of òternary relationó (used as it is for the directed graphs [33]) is more 

applicable to the TRM than the directed graph. This is because unlike the directed graphs, 

three same things are related together in the TRM. 

2.9 Using the Commonality for Interconnection 

The studied facts about finding a possible common ternary approach to the related works 

may show new or hidden aspects of interconnectivity between those areas. For example, a 

direct mapping from FOHM (and not any arbitrary open hypertext model) to RDF is 

possible [87] because both are three-element metadata languages.  

In this section, some of such interconnectivities will be shown as a number of case studies.  

2.9.1 The Interconnections of Workflow, Knowledge and Hypertext 

The case of hypertext-based workflow management systems is an example of knowledge 

management with hypertext [82] and can be studied as a knowledge-oriented hypertext. 

Workflow management systems (WFMS) are close topics to both knowledge systems and 
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hypertext. The workflow be applied to manage a corporate or individual knowledge, 

problem solution process or business process [82]. This will be more clear by noticing that: 

1) Workflows have a non-linear nature in task processing and in performing processes; and 

2) Knowledge systems, together with business processes, are the main areas of workflow 

applications [149]. The triangle of supportive relations between these three areas is 

illustrated in Figure  2-8 

2.9.2 Workflow Interactions with Knowledge Systems 

Workflow Management Coalition [195] defines workflow management as: òWorkflow 

management consists of the automation of business procedures or workflows during 

which documents, information or tasks are passed from one participant to another in a way 

that is governed by rules or proceduresó. Also Patrashõs [147] definition on knowledge 

management is: òGetting the right knowledge to the right people at the right time so they 

can make the best decisionó. By mixing these two definitions, workflow management is 

shown to be able to act as a tool for knowledge management. This has been shown in 

detail by Garnemark in [82], when he describes how integrating knowledge management 

techniques with workflow systems can support knowledge collection, storing and sharing. 

As an example, the knowledge of recognizing a chemical solution has a procedural nature 

which can be collected, transferred or presented by workflow systems. Noticing that 

workflows are directed graphs, Collier in [59] shows how a directed graph can represent an 

specified knowledge. 

 
Figure  2-8: Relations between workflow, hypertext and knowledge systems 
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2.9.3 Workflow Interactions with Hypertext Systems 

When studying some interactions of workflows with hypertext systems, two groups of 

approaches are observable: workflows to help hypertext modelling and hypertext to realize 

workflow system. These will be studied in the following two sub-sections. 

2.9.3.1 Workflows to Support Hypertext  

There are some related works in applying workflow concepts in designing and modelling of 

hypertext systems. The term of òWorkflow-driven Hypertextó has been introduced as òthe 

hypertext interfaces that permit the execution of activities and embody constraints that 

drive the navigation of usersó [111]. Mamaani and Abdul Kareem in [114] show that the 

workflow nature of hypertext when being presented and navigated can be seen as a 

process, illustrated by some flow diagrams and modelled by workflows and Petri-nets. This 

idea is a motivation point for some other researchers to bridge between these two 

domains:  Stotts and Furuta in [81, 169, 170] take it to build Trellis model of hypertext 

based on Petri-nets. Vivekanandan and De Roure in [180] show that open hypertext 

systems as a set can be modelled with workflow principles for providing better services. 

However, the resulted workflow is more automatic and less human driven. Collier in [59] 

shows how directed graphs can be a navigational structure of hypertext systems in their 

provided system called Thoth-II. Brambilla in [36] has integrates the BPMN graphical 

notations of workflow with WebML notations in order to apply the workflow technology 

to the conceptual design of an organizationõs website.  

As a recent hypertext modelling approach, òProcess-oriented Model of Hypertextó [35] has 

a process-centric approach to the hypertext conceptual modelling, instead of the data-

centric approaches (like WebML, section  2.4.2). As a result, the process-oriented hypertext 

incorporates some elements from the workflow technology domain (like òusersó, 

ògroupsó, òcasesó and òactivitiesó) into the hypertext modelling. In the process-oriented 

model, the conceptual design of a hypertext application is divided into hypertext design, 

data design and process design. Then in the process design, the orientation and 

configuration of hypertext nodes will help to realize the workflow patterns which are 

controlling the whole hypertext system. 

2.9.3.2 Hypertext to Supports Workflows 

There is another group of the related works in employing hypertext environments to 

support workflow systems. Ashman in [20] suggests that because links can order the 
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processing units of a large process, they can be used to generate workflow models. She has 

also counted the recording of corporate knowledge as one of the usages of hypertext 

systems, which is recording the navigation steps of an expert while solving a problem and 

saving this navigation history as a workflow for future use in order to fill the gap between 

experts and invoices. In WIS [172], which is a hypertext system and employs Metalevel 

Links (section   2.4.4) in its link structure, the navigation structure is intentionally designed 

to support practical workflows. The provided example in that work shows how such a 

design can support a workflow system to define a recruitment process. 

In addition to the definition of the òProcess-oriented Hypertext Modeló in the previous 

sub-section, the term òProcess-oriented hypertextó has been also used to refer to a class of 

hypertext deployed to implement workflow management systems in [133]. In this view, 

hypertext is used as a design platform that can be used to develop information systems, 

particularly for WFMSs. 

2.9.4 The Interconnection of ZigZag and Hypertext 

Ted Nelson says: òZzstructure is not hypertext, while it is composed of nodes and links 

(like the common hypertext forms), by itself it would make very bad hypertextó [129]. For 

some others, ZigZag is a paradigm of  hypertext [122]. One obvious point is that they are 

both based on the node-link structure. That is why it is generally accepted that ZigZag is a 

hyperstructure, in which data structures are utilised to model both organizational and 

presentational aspects of hypertext nodes and links [117]. Also navigational behaviour is 

obviously involved in both organizational and presentational aspects of hypertext systems. 

Thus, ZigZag can be an underlying structure for several aspects of a knowledge-oriented 

hypertext, including the navigational model. This means that in such a hypertext system, 

nodes are cells of a zzstructure, links are links of that zzstructure, and finally associations of 

links are dimensions of that zzstructure. It is then clear that the BRM cannot cover the 

third element and as it will be shown, zzstructure linkbase can not have a binary 

implementation. 

2.9.5 The Interconnection of Databases and ZigZag 

As will be explained in section  3.3, it is possible to design a ZigZag information system on 

top of the database layer. Appendix A contains the details of a ZigZag data navigation 

system designed using the relational database as its data layer.  
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2.9.6 The Interconnection of Databases and Workflows 

Chapter  7 includes the details of development of a workflow management system on top 

of a databases layer. 

2.9.7 The Interconnection of Databases and Hypertext 

DHE [29, 30] (described in section  2.4.5) was an example of building hypertext links over a 

relational database. Moreover, databases and hypertext system can have other forms of 

supporting to each other, which DHE is only an example of those approaches. Hypertext 

can also be used as a user interface to retrieve information of databases [28, 80, 140] and in 

terms of usability, this kind of user interface for a database system is more efficient than 

the traditional tabular approaches [120]. 

2.9.8 The Interconnection of Databases, XML and Directed Graphs 

There are methods of building relational databases from both directed graphs and XML 

[33, 77, 78] by several mapping methods. Also databases is counted as one of alternative 

ways of XML storage strategies in [175]. A review on those works simply shows that the 

directed graphs are usually used as an intermediate stage to map between XML and 

databases, and also the ability of converting XML to directed graphs and database is based 

on the existence of a common ternary foundation. 

2.9.9 The Interconnection of ZigZag and Directed Graphs 

Zzstructure can be defined in several ways, including a definition based on directed graph 

in [116]. In that view, zzstructure is a òdirected multi-graphó with some extra restrictions. 

This is concluded by means of a ternary approach; however, a pure ternary definition of 

zzstructure has been introduced in section  2.3.3. 
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2.10 Summary 

In this chapter, through reviewing the related works, the direction was to find a òternaryó 

common foundation in some different areas: Knowledge management, hypertext, the 

Semantic Web, ZigZag and Workflow management. What is meant by the òternary 

foundationó has not been formally defined yet and it is supposed that the reader in this 

stage has enough background and motivation to read chapter  3 and to know the basic 

definitions of the TRM, having an implicit view about what are the expected properties of 

the TRM. 

So, we now return to our original question ð are we talking about the same structure? 

Although this chapter could provide a rough idea about the targeted unified model, it yet 

cannot accurately define what that unified model is. The fundamental information model 

of all of these paradigms has been shown to be a òternary node-link structureó [150] but 

this needs to be justified through this thesis after introducing TRM in the next chapter, 

particularly in sections  3.3,  4.1,  5.7,  6.4. 
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C h a p t e r  3-  

3 THE TRM: A GENERAL INTRODUCTI ON 

 

 

 

 

 

In chapter  2 an implicit view of a common information model has been drawn. This model 

is based on three elements that can be used in a variety of node-relation structure. It is 

supposed that chapter  2 could justify the basic need for òassociationó as a main element 

that can be modelled explicitly in nodes of the structure neither in the relations nor 

implicitly anywhere else. Thus the drawn image of the proposed model must contain three 

elements of òsourceó, òassociationó and òdestinationó as the relations atoms. This model is 

called òTernary Relations Modeló or òTRMó to express that it is based on relations 

between three nodes, or some triples which are related together. This chapter is to 

introduce the TRM in an abstract context and to show how it can be a generalization of all 

òternary approachesó studied in the previous chapter. 

3.1 Abstract Definition  of the TRM 

The definition of the TRM is proposed in two stages: Static and Dynamic. The Static TRM 

is applicable when the relating nodes are fixed and independent of each other and/or 

external parameters, and the dynamic definition extends the concept of the Static TRM to 

the areas where nodes can be functionally dependent of each other. 

3.1.1 Static TRM Definition 

The basic concepts are: 

1- òNodeó is a name for every individual piece of data/information. 

2- A òRelationó is an ordered triple of any three nodes called òsourceó, òassociationó 

and òdestinationó respectively. 
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3- Each relation is itself a node. 

4- òRelationsó in the TRM are bi-directional, which means that a single relation can 

express two meanings when being read or interpreted from two different directions. 

The TRM information space is as simple as a set of nodes. There is no hierarchy structure 

between nodes in the TRM. The fact that òrelations are themselves nodesó, doesnõt imply 

any hierarchy because it can be resolved by cross-referencing. 

The TRM graphical notation consists of circles representing nodes and arrows representing 

relations. Arrows originate from the source node, passing through the association node and 

terminate to the destination node. This has been illustrated in Figure  3-1, and a sample 

TRM-modelled information space has been shown in Figure  3-2. 

 

 

Figure  3-1: Graphical notation for the abstract TRM definition 

 
Figure  3-2: A sample TRM-modelled information space 
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It is very important to clarify a point about the TRM notation. òThis notation is not 

supposed to be used instead of any other notation or language or to be a competitor to 

themó. As will be seen later, for each individual subject of work, like workflows or XML, 

some equivalent TRM notation exist, but it doesnõt mean that the TRM notation is 

recommended. The target is to say that òit is possibleó for the TRM to express them. This 

is because the TRM notation is going to be cumbersome for large amount of information. 

However, it may or may not be a rival notation depending on the subject. 

3.1.1.1 Formulation 

The fact that òeach relation is itself a nodeó is a recursive phrase in formulating the TRM 

and may look to cause problems in making a closed TRM formulation. Fortunately, this 

recursion doesnõt imply any infinite loop because there are some basic nodes, i.e. nodes 

that donõt contain any relation, otherwise it would be impossible to build relations over 

other relations. This has also the advantage of self-description, in which one can say 

òeverything in the TRM is nodeó to make the TRM definition very simple. 

Let us first assume that relations are different entities from nodes. The TRM is defined as: 

A couple of  (N,R)  where  

N is the set of all nodes and  

RËN3           i.e. R={some (x,y,z) | x,y,zÍ N}  

 

Now for imposing the fact that every relation is itself a node, it is not possible to simple say 

RËN because N doesnõt include triples by definition. So let us define N0 as the set of 

basic nodes, i.e. nodes which doesnõt express relations. Then N is the set of all nodes 

which is the union of N0 and R. In this case, R is N3 and not N0
3 because relations can be 

built over other relations as well as basic nodes. Now the Static-TRM is defined as:  

A set of all nodes: N=N08R where N0 is a set of basic nodes; and RËN3 or, 

N=N 0 8{ some (x,y,z) | x,y,zÍ N}  

Equation  3-1: Static-TRM formulation 
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It is noticeable that N is defined using N, which expresses the recursive definition. This 

formulation shows a node production machine: Having a set of N0 is enough to grow the 

information structure in the TRM, all one needs to do is to build more triples and add 

them to the existing nodes. 

3.1.1.2 Internal Architecture 

In the TRM, each node can have the following data members: 

1- Id and/or URI 

2- desc (description) 

3- da (direct association) and ra (reverse association) 

4- src (source), asc (association) and dst (destination) 

Id is the unique internal identifier of the node which can be used to reference to any node. 

The validity of Id can be defined in different scopes, which can be universal or local, 

depending on the application. URI defines the web standard identifier of the node. desc is a 

text containing the name, description or value of the node, independent of possible roles 

of the node in any relation. da and ra are two texts describing two faces of this node when 

it participates in a relation in normal or reverse directions. src, asc and dst are references to 

Ids of three other nodes and are used when this node is a relation (or a statement) about 

the other nodes.  

Id/URI is the only necessary data members and the rest of members are optional. This has 

been intentionally defined in order to allow the node structure to handle both single node 

definitions (when at least one of desc, da or ra is needed) and relation definitions (when src, 

asc and dst are needed). 

3.1.2 Dynamic Definition 

The TRM in general supports the functional links, which means that each of the three 

elements of a relation can be a dynamic function of another. It also means that they are not 

only changeable by the authors, but also they can be changed dynamically on the readerõs 

side. Thus in the most general case, each of the three elements in a ternary relation can be a 

function of two others and the environmental attributes on the readerõs side (like userõs 

specifications, location, time, etc.).  
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This functionality will allow us to cover some areas which cannot be covered by the Static-

TRM, like the functional links of the BRM, as mentioned in section  2.5. Also by mixing 

this functionality to some of the related works studied in chapter  2, new horizons may be 

opened to extend those information models and build new models. As an example, ZigZag 

if mixed with the functional links. It is noticeable that the functional links of the TRM act 

in a totally different level than the TRM links level. It means that the links are still ternary 

and the functional links are not intended to support extra link dimensions if they are 

needed. Instead, the functional links generalize the way that three nodes can be linked. In 

the Static TRM, a link is about three fixed nodes and in the Dynamic TRM, it is about 

three variable ones. As will be seen later, the dynamicity is neither about the number of 

nodes to be linked, nor about the content of each node, but about selecting the 

participating nodes. The content of a node is not necessarily fixed in the Dynamic TRM 

(e.g. a functional link is itself a node with dynamic content) but a single functional link does 

not act on the level of changing the content of the nodes.    

3.1.2.1 Formulation 

In order to formulate the Dynamic-TRM, three functions with some attributes must be 

defined. Also it is necessary to have an abstracted attribute to show all of the 

environmental parameters. Making this attribute is completely dependant on the nature of 

information and may be different from case to case. Thus in the following formulation, it is 

assumed to have an abstracted and single parameter, named t, which includes all of the 

necessary environmental parameters. A set of all possible t's is named T.  

The Dynamic-TRM is defined as follows: the Static-TRM (section  3.1.2.1) plus: 

 

In terms of notation, it is difficult to draw graphs for Dynamic-TRM because the result 

would be a dynamic graph that changes by having different environmental parameters. 

N is the set of all nodes  

RËN3           i.e. R={some (x,y,z) | x,y,zÍ N}  

T={some t | t  is an environmental parameter} 

 

x=f(y,z,t) , y=g(x,z,t) , z=h(x,y,t)   ; and   f, g, h: (N2 ³T) Ą N  

 

Equation  3-2: The Dynamic-TRM formulation 
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However, dotted line has been used in a simple example shown in section  7.1 to denote a 

time-dependence link. This solution may not be applicable in a more complex example. 

Relating three nodes to each other while the relation uses functions needs more 

clarification. A possible misunderstanding is to suppose that nodes are themselves dynamic 

in content, and that the Dynamic-TRM relates these varying nodes to each other. Although 

it is possible for the contents of nodes to be changed at any time (like any other 

information model), the Dynamic-TRM has nothing to do with the changes in the content 

of nodes. Being dynamic here is about relating nodes, not about contents of the related 

nodes. If a single defined relation relates three fixed nodes of x,y,z1, it is possible that under 

other circumstances the same relation relates x,y,z2. So the TRM relations include 

references to some three nodes, while the mechanism of referencing is direct in the Static-

TRM and indirect (functional) in the Dynamic-TRM4. The practical solution to this is to 

define the functions like f, g and h (of  

Equation 3-2) as nodes and use them as source, association or destination of the TRM 

relations. One then can have a static snapshot of the Dynamic-TRM by knowing the result 

of the dynamic functions. 

3.2 Examples of the TRM 

3.2.1 The Static-TRM 

As an example of the Static-TRM, the bibliographic example of section  2.1.2 is recalled. 

However, the information in that example doesnõt need all of the Static-TRM features (like 

bi-directionality). Figure  3-3shows the equivalent TRM graph.  

                                                 
4 It is obviously possible that the content of a link is changed (an example is a node representing a dynamic TRM link ð as 

a relation is itself a node) but that node still has a fixed identification that make it ready to participate in any another 

static or dynamic link. The latter dynamic link again has nothing to do with the changes inside the participating nodes, 

even if they are themselves changing. 
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3.2.2 The Dynamic-TRM 

Ternary-Links in a personalized hypertext (section  5.6) is an example of the Dynamic-

TRM, and the environmental parameters are the identified user specifications and possibly 

time. The system may show an anchor in the hypertext as the source of a link while this 

could not be a link with other users, then by clicking on that anchor a menu of choices 

may appear that shows the available links while each item may vary for different users. By 

selecting one of them, another environmental parameter is involved which is the òuserõs 

choiceó. Finally another function may calculate the desired destination with all of the 

available parameters during the process and will take the user to that point. 

DHE [29, 30] (described in section  2.4.5) is another special case of the Dynamic-TRM 

when the added computed links are in the forms of functional triples. The rules of finding 

links in DHE (called RNA: Relationship Navigation Analysis) are based on the non-

normalized schema of a relational database. The set of links in the resulted hypertext is 

R={(x,y,z) | y=f(x), z=g(x,y)} when x is the content of a field, z is the available semantic 

relationships originating from x, and z is the endpoint. Finally, f() and g() are functions 

generated by RNA. 

3.3 A Layered Approach 

After defining the TRM in this chapter, it is necessary to find out how TRM fits in with 

other related works studied in the previous chapter. What has been used till now was the 

word òcoveringó to show that the TRM can be a common foundation for different 

 

Figure  3-3: The TRM graph representation of the sample database 



- 64 - 

information models. This word must be clarified to show the level of such coverage. For 

example, the way that the TRM covers the BRM is far different from the way that it covers 

Zzstructure. 

To achieve the explicit relation, a layered definition of an Information System has been 

proposed in Figure  3-4.  

In that configuration, the upper layers are the closer ones to representing the information 

to the user and the lower layers are the closer ones to the machine physical level. Each 

layer provides enough tools or functionality to represent the information provided by its 

underlying layers. The layers are introduced as: 

1. Storage Layer: Contains mechanics, vocabularies or syntaxes about how to store data in 

files.  

2. Information Model Layer: Deals with the method of structuring the information in a 

space of information, from raw data to user-level information. 

2.1. Model Foundation Layer: Deals with how to build the structural units of 

information using raw data. 

2.2. Model Top Layer: Deals with how the structural units can be managed to build 

the user-level information.  

3. Application Layer: Provides functionalities or tools for users by managing the user-level 

information. 

 

Figure  3-4: Information System Layers used in this research 
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Now the TRM is positioned in the Model Foundation layer, which means that the TRM 

deals with building the basic information units. The TRM subsets -with less degree of 

freedom than the defined TRM- like the BRM or the Static-TRM are also basing some 

related top-layer models and they are in the same layer as the TRM.  

ZigZag, relational and semi-structured databases, workflows models, and RDF/OWL are 

categorized in Model Top Layer because they know how to manage the information units 

in an information space. Members of application layer manage the user-level information 

like the World Wide Web, open hypertext systems or workflow management systems. 

Going downward, the Storage Layer provides the storage rules, syntaxes or vocabularies, 

like XML as a textual language to store information in semi-structured database. Tables of 

a relational database (including the mechanics of how the information is arranged in tables) 

are also categorized under this layer. 

It will be shown in section  4.1 how XML can be converted to the TRM graph. Now the 

question is how something from a lower layer is to be converted to something from an 

upper layer? The answer needs a deeper look on what has been converted, and as will be 

shown will result in another interesting outcome. What is converted to the TRM graph is 

not the vocabulary or syntax of an XML listing, but it is some semi-structured information 

(or a hierarchy of information). That information could be written in a few possible 

languages, including XML. Since XML is the most common way of expressing such kind 

of information, it seems that XML has been converted. The TRM is located in an 

abstracted layer over XML and RDB tables, so it shows that the TRM may be expressed in 

XML or tables. In fact it will be shown in the next chapter that the Static-TRM can be 

expressed both in XML and RDB tables without any contradiction. òTRM-XMLó will be 

introduced as a language of expressing the TRM-based information in XML. This naming 

is not because the TRM-XML is not XML or not because it has not the XML syntax, but 

because of its special vocabulary. An instant and confusing result is that XML can be 

rewritten in the TRM-XML (which is still in XML); something that looks like a recursion, 

but in fact is changing the information modelling method. The other outcomes of this fact 

are left here to be studied after introducing the TRM-XML in the next chapter. 

This layered orientation can also be evidenced by DIKW pyramid explained in section 

 1.1.1. and illustrated in Figure  1-2: The storage layer represents òdataó, the information 

model layer represents information, and the application layer represent knowledge. In the 
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information model layer, the foundation layer (here TRM) builds information by relating 

data, and the top layer (like RDF) makes patterns of information to be represented as 

knowledge in the application layer. 

The order of layers is not about the richness of information but about their position in the 

user/machine interactions. Particularly, the role of the foundation layer can be expressed as 

òmaking information from dataó and the top layer as òmaking knowledge from 

informationó by reference to the data-information-knowledge hierarchy discussed in 

chapter 1. The fact that the TRM has more features than (for example) ZigZag doesnõt 

mean to swap their level in that figure. Instead, the fact that ZigZag uses a (subset of) TRM 

features in making its building blocks leads to put it on top of the TRM. 

It is noticeable that the TRM itself does not necessarily or directly involve in userõs side or 

in machineõs side. In other words it is not a direct visualization tool, nor a machine coding 

method. The value of TRM is benefiting the user from the values of a ternary approach to 

links implementation. 

3.3.1 Bottom-up Threads 

As an outcome of the mentioned layered approach, there are some Bottom-up layer 

threads to be discovered, in which not all of the layers to be covered necessarily nor all of 

the members of a layer can serve all members of an upper layer. For example the BRM 

may not serve ZigZag, or tables may not server the Dynamic-TRM. But there are some 

possible threads to be counted here: 

1- TablesĄTRMĄDBĄRDBMS: Shows a usual relational database management 

system. 

2- TablesĄBRMĄDBĄOH: Shows an open hypertext system with binary linkbase 

stored in a relational database tables. 

3- HTMLĄBRMĄéĄWeb: This shows the status of the Web with normal binary 

links. 

4- XMLĄTRMĄRDFĄSW: Shows the status of layers in the Semantic Web: This 

clarifies that the TRM and RDF are in two abstracted layers.  
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5- XMLĄTRMĄéĄDBMS: Is it possible to build databases over the pure TRM? 

A good starting point to chapter  4. 

6- XMLĄTRMĄDBĄOH: Building open hypertext systems with some Ternary-

Linkbases, a motivation to move to chapter  5. 

7- TablesĄTRMĄZigZagĄé: Shows a zzstructure stored in tables, as 

demonstrated in Appendix A.  

8- TablesĄTRMĄWFĄWFMS: Shows a WFMS based on ternary relations which is 

used tables of a DB as storage. This is what has been implemented and explained 

in [152]. The same idea can be done based on XML as well.  

3.4 Summary 

In this chapter the TRM theory has been formed. The TRM is introduced to be a 

collection of non-hierarchical nodes. The concept of relations (which themselves are nodes 

in the TRM) are based on triples. Two versions of the TRM called static and dynamic are 

formulated: The Static-TRM for fixed triples and the Dynamic-TRM for ternary functional 

links.  

A layered structure has been introduced which can precisely locate the TRM among other 

works and information models. The TRM is shown to be located in the foundation layer of 

information modelling techniques, while being on the top of logical and physical storage 

layers.  Tracing possible bottom-up threads in those layers helps justifying some 

implemented works as well as discovering some unimplemented ones. It can also be a 

good motivation for moving to the next chapters in order to build new information 

models.  

According to these arguments, the TRM is a highly generalized approach to information 

that may be used to unify many existing information models. In effect, it may be viewed as 

an Information Model Construction Kit for the next chapters. 
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C h a p t e r  4-  

4 TRM-DB: A NEW SCHEMALESS DATABASE 

 

 

 

 

 

 

There are many situations in IT systems where people need to manage real-world 

information and desire not to be constrained by òschemasó. While real-world information 

is free in structure, the traditional desire in computer world was to store information in 

some rigid structures. These rigid data structures were developed to serve business in the 

early computer ages, and as such their design is, in many respects, a direct descendent of 

hundreds of years of bookkeeping [47].  

Spreadsheets, Relational and Object-Oriented Database Models are all about table-

orientation and/or hierarchy and are based on the dependence of data to some kinds of 

associated schemas. Despite all of the benefits of these technologies, fitting the real-world 

data to the associated schemas has been always together with many challenges on how to 

artificially rearrange data, how to show them in natural ways and more importantly, how to 

dynamically apply structural changes. Having two separated sides -data and metadata- for a 

database management system implies keeping a permanent gap between designing and 

using the database systems. The more dynamic the data is, the more difficulties in 

managing these two sides are likely to appear.  

The basic idea of this chapter is introducing a very general database model based on the 

TRM, called òTRM-DBó. Every piece of data and the relations between them in the TRM-

DB have a single and global type, called ônodeõ. As will be described, because there is no 

associated schema to a specified data set, it will be called òschemalessó here.  
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4.1 An Overview of the TRM-DB 

Recalling from the layered approach proposed in section  3.3, the TRM-DB is located in the 

Model Top Layer in the group of DB models. It is supposed to be a database on top of the 

TRM (as the Model Foundation Layer) that can use the full potential of the Static-TRM, 

not a subset of that. Thus the TRM-DB is some tools to manipulate information in a 

complete Static-TRM framework. As shown in the layered design of Figure  3-4, the storage 

layer of the new database system is some known storages like tables or XML. This section 

proposes implementing the TRM-DB on top of those two storage layers. These two 

implementations are called òTRM-Tableó and òTRM-XMLó hereafter and will be 

introduced in the next two sections. 

Before introducing the implementations of the TRM-DB, it is necessary to study how the 

TRM can be formally the fundamental information model for the studied related works, 

including RDBs, XML and ZigZag (as claimed in Figure  3-4). 

4.1.1 The TRM-DB behind the Relational Databases 

The TRM can be extracted from any data modelled in the relational databases. In fact, 

RDBs have their own method to making ternary relations: òTablesó. Two approaches are 

possible to explicitly express RDB tables in the TRM: In the first approach, tables are 

viewed as expressing predicates, and the second approach uses the binary decomposition 

to relate RDB tables to the TRM.  

Firstly, a table can be viewed as a single semantic predicate (or association, in TRM term) 

between a record identifier and a record, and a record itself is a set or ternary relations 

between a record identifier, a field name and an individual data sit in that field. In other 

words, tables are semantics that relate tables to records, and the field names are semantics 

that relate records to data. For example, a table of òarticlesó with fields such as òtitleó, 

òauthoró,etc. is a set of ternary links like : 

{(article_id1, articles, (article_id1, title, title1)), 

  (article_id1, articles, (article_id1, author, author1)),  

  (article_id2, articles, (article_id2, title, title2)), é } 

Secondly, can be easily proven by noticing that each data modelled in relational database 

can be decomposed to a set of binary relations [55]. It means that after decomposition, 

there will be an infinite number of two-column tables that include all of the information 
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necessary for rebuilding the original database. The two columns are usually IDs and textual 

strings. Thus there will be a number of relations called R1 to Rn where: 

Ri = { (x,y) |  x has relation ri to y } ; 1¢i¢n 

Then R0 can be defined as:  

R0 = { (i, ri) | 1¢i<¢n}  

Finally a general set of R can be defined as: 

R = { (x,i,y) | (x,y) Í Ri , 0¢i¢n }  

The above set is a kind of the Static-TRM formulation, according to Equation 3-1. This 

conversion has been illustrated in Figure  4-1. 

It is noticeable that the binary decomposition may be widely impractical, as it may end up 

with an uncontrollable number of relations, but has been used here to support the TRM 

theory.  

 

 

 

Figure  4-1: A sample conversion of a set of binary relations to the TRM graphs 
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4.1.2 TRM vs. XML 

According to section  2.2, an XML listing can be viewed as a set of ternary relations 

between elements, attributes and textual values. The main idea is that an XML tag is an 

association between its super-element and the entire sub-element or the elementôs textual 

content. Also attribute names are associations between elements and textual values. This 

shows that an XML listing can be converted to the TRM graph. Also the TRM has some 

different properties from XML: The TRM is free from any hierarchy; it supports functional 

linking and bidirectionality. 

The idea of converting an XML listing to a TRM equivalent includes making ternary 

relations between an entire element to its contents (whether sub-elements or attributes). 

For relating a node to its sub-elements, the required associations are the name of sub-

element and the name of attributes. The entire elements (and sub-elements) are themselves 

nodes that have no explicit equivalent in an XML listing (The name of the element is not a 

good candidate because the elements can be repeated and the name must not be re-used 

for each occurrence of an element). Thus some temporary nodes (like n1, n2 in the 

following example) must be used. Finally the elements in the first level of hierarchy are 

connected to the whole XML document (named òrootó) via their element names. 

To shows how to convert an XML listing to a TRM graph, these steps must be carried out: 

1- A node called the òrootó is defined. 

2- All tags and sub-tags are representing by some nodes. 

3- The listing between each opening and closing tag (an element or a sub-element) is 

also represented as a node. 

4- All attributes are represented as some nodes. 

5- All textual values (either for attributes or for elements) are also represented as 

some nodes.  

6- The root node is connected to the nodes representing first-level element via the 

nodes representing the first-level tags. 

7- The first level elements are connected to the nodes representing the second-level 

element via the nodes representing the second-level tags. 

8- Repeat step 7 for all the nested elements. 
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9- For all attributes, the relevant node is connected to the relevant textual value node 

via the relevant attribute node. 

10- A node called òtextó is created, and then all the element nodes are connected to the 

relevant textual value node, if they have any. 

 

It is also noticeable that during the above process, there may be repeated tags, attributes or 

textual values, which must not be represented as different nodes, and the maximum reuse 

must be utilized. In addition, XML supports ID and IDREF couples to make cross-

referencing. It will be very easy to represent that in the TRM graphs by having textual value 

for IDREF: attributes must not be created as nodes, because they have been already 

created. Thus the referencing element node must be connected to the referenced element 

node via the relevant attribute name. In this case, the node òidó representing the ID 

attribute is a special pre-defined node. 

To illustrate the above points, two examples are shown in Figure  4-2 and Figure  4-3. The 

first figure is to illustrate the main idea in a simple example and the second figure includes 

how to convert sub-elements and cross-referencing to the TRM graphs. 

 

 

 

Figure  4-2: A simple example of converting XML to the TRM graph 
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4.1.3 The TRM vs. ZigZag 

According to section  2.3.3, a ternary formulation on zzstructure has been defined. That 

formulation consists of a triple of (C, Z) where C is the set of all zzcells and that ZË C3, 

plus two extra conditions about the uniqueness of right and left connections along a single 

dimension. Comparing that formulation to Equation 3-1 and  

Equation 3-2, it is clearly concluded that zzstructure formulation is a special case of the 

TRM formulation. The difference -or what the TRM has over zzstructure- are: 

1- The TRM supports multiple connections through a single association (zzdim here), 

i.e. the TRM formulation doesnõt imply such extra conditions about the uniqueness 

of right and left connections along a single dimension. This is also a solution to the 

problems of one-to-many relationships in ZigZag explained in section  2.3.1. 

2- Zzstructureõs relations are not themselves nodes (zzcells here). This prohibits 

zzstructure to be able to built relations over relations. 

3- TRM nodes can be repeatedly used in different TRM relations without any need 

for transclusion; however, the TRM can implement transclusion if needed (e.g. to 

simulate ZigZag) by connecting through special node of òd.cloneó.  

 

Figure  4-3: An example of converting XML to the TRM graph considering sub-elements and ID referencing 
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Also according to the TRM internal structure explained in sections  3.1.1.2 and the TRM 

dynamic definition in section  3.1.2.1, two other differences between the TRM and 

Zzstructure are: 

4- Zzstructure does not support bi-directional links, i.e. a zzdim has only a single 

description along its positive direction, and there is no way to realize the explicit 

meaning of the connection from the destination cell to the source cell. The TRM 

can fulfil the ambiguity problems of ZigZag explained in section  2.3.1. 

5- ZigZag cells are enumerated and it does not support the functional links, thus it 

can only be a under the category of the Static-TRM.  

As a result, a zzstructure graph can be converted to the TRM graph (but not vice-versa). 

The fact that òtwo zzcells can be connected along a zzdimó is mapped to the fact that òtwo 

TRM nodes can be connected through an associationó. In order to do the conversion, one 

needs to define separate nodes for both zzcells and zzdims, and connect them in the same 

way. For cloned cells, one can either translate them directly to the TRM (by relating via a 

special node of d.clone), or to redesign the structure in the TRM (by re-using a single 

node). A sample conversion between two graphs has been illustrated in Figure  4-4. 

4.2 The TRM-Table 

The TRM-Table uses a single table to store the entire database (called the òNodesó table). 

The singularity of the table is the core of the TRM-Table, as it is enough to manipulate 

data without any data-related schema, hierarchy or relation between different tables (like in 

RDBs). It still can be managed in a relational database engine and be queried using 

languages like SQL, because it is basically nothing more than a table. The distinction is 

òhowó and òwható to store in the table, because it is able to store any data modelled in the 

Static-TRM. 

The table design is simply like Figure  4-5 

 

Figure  4-4: A sample conversion of Zzstructure to the TRM graph 
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Figure  4-5: Design of the TRM-Table called Nodes table (all fields are text) 

Although the above design is a table, it is still called òschemalessó in this context. This is 

because the field names are independent of the data and are originated by the information 

model, not by the information itself. By this view, the tabularity of the design does not 

imply any rigidity on the handled information. Thus the TRM-Table may be considered as 

an òIrregular Tableó. 

4.2.1 An Example 

Recalling the bibliographic database of section  2.1.2, the equivalent TRM-Table (called 

Nodes) is shown in Figure  4-6. 

 

Figure  4-6: the TRM-Table equivalent for the bibliographic example 
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4.3 The TRM-XML  

A fundamental rule in the TRM is that every piece of information is a node and there is no 

hierarchy of nodes. Although XML is designed to manage hierarchical data, it can be 

adopted here to manage the TRM nodes in a one-level of hierarchy. The TRM-XML is 

then an XML-based òlanguageó that is used to express information modelled in the Static-

TRM. This language uses XML as syntax and the TRM rules as its vocabulary. Recalling 

from section  3.1.1.2, the internal data structure of the TRM nodes motivates to use XML 

to assign textual or referenced values to sub-elements of a node element. By this view, the 

sub-elements of a node element are same as what has been introduced in section  3.1.1.2 as 

Id/URI, Desc, da, ra, src, asc and dst. As described in section  3.1.1.2, TRM does not require 

all links to be bi-directional, so Id is the only necessary sub-element and other sub-elements 

have been intentionally selected to be optional. 

For its vocabulary it needs a dedicated schema. Like any other XML, the schema can be 

expressed in another XML file called the TRM-XMLSchema. Similar to what has been 

mentioned about irregularity of the TRM-Table, the TRM-XML Schema does not imply 

any rigidity (unlike any other XML Schemas). The TRM-XML Schema is a unified 

òschemaó for the òschemaless databaseó. 

4.3.1 The TRM-XML Schema 

The basic element is called <node> with sub-elements including Id, URI, desc, da, ra, src, asc, 

dst. Having sub-element is not against the TRMõs òno hierarchyó principle, because these 

are sub-elements of a ònodeó and are designed to express the internal data structure of a 

single node.  Figure  4-7 shows the list of the TRM-XML Schema. 
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Finally <TRM> is the single root element that includes all of <node> elements. This 

element opens once at the start of file and closes at the end. 

 

Figure  4-7: The TRM-XML Schema listing 
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4.3.2 Example 1 

As an example, suppose one needs to express these statements: Tim is a lecturer, Java is a 

course, and Tim teaches Java. Here, the mentioned TRM schema can be used to structure 

the TRM-XML data listed in Figure  4-8. 

 

Figure  4-8: The TRM-XML listing of example 1 



- 79 - 

Because of the TRMõs bi-directionality, the above set of the TRM relations can express the 

following relations in the same time: Lecturer is the type of Tim, Course is the type of Java, 

and Java is taught by Tim. 

Also one can build another relation about a relation. For example, to say that òAmir knows 

that Tim teaches Javaó it is enough to add the following lines: 

<node> 

 <id>B03</id.>  

 <desc>Amir</ desc> 

</node> 

<node> 

 <id>P03</id>  

 <desc>knowing</desc> 

 <da>knows</da><ra>is known by</ra> 

</node> 

<node> 

 <id>S04</id> 

 <src>B03</src>< asc>P03</asc><dst>S03</dst> 

</node> 

 

Which again, at the same time expresses that òTim teaches Java is known by Amiró or 

òJava is taught by Tim is known by Amiró or òAmir knows that Java is taught by Timó, etc. 

The above interpretations of a single fact may seem obvious for human reading, but not 

for the computers. This shows how bi-directionality can expands the expressed meanings 

when the number of interconnected the TRM relations increase. The application of this 

multiple-interpretation would be more flexibility in database querying. 

Now if one wants to assign a course code (say òC001ó) to that Java course, the following 

lines must be added: 
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<node> 

 <id>B04</id > 

 <desc>C001</ desc> 

</ node> 

<node> 

 <id>P04</id > 

 <da>is the code of</da> 

</node> 

<node> 

 <id>S05</id>  

 <src>B04</src>< asc>P04</asc><dst>B04</ dst> 

</node> 

 

More importantly, if one wants to use òteachingó as object or subject of a statement, like to 

say that òTim likes teachingó, the following lines must be added.  

<node> 

 <id>P05</id > 

 <da>likes</ da> 

</node> 

<node> 

 <id>S06</id > 

 <src>B01</src>< asc>P05</asc><dst>P01</ dst> 

</node> 

 

The reuse of P01 as object without redefining it as a separate node is noticeable. 

4.3.3 Example 2 

Recalling the sample database of section  2.1.2 and the relevant TRM graph shown in 

Figure  3-3, writing the TRM-XML list is a straightforward process. The result is the 

following list: 
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<?xml version="1.0" encoding="UTF-8"?> 

<TRM xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="TRM.xsd"> 

<node><id>IDTitle</id>  

 <desc>Title</desc> 

 <da>is titles as</da><ra>is the title of</ra> 

</node> 

<node><id>IDAuthor</id>  

 <desc>Author</desc> 

 <da>is written by</da><ra>is the author of</ra> 

</node> 

<node><id>IDYear</id>  

 <desc>Year</desc> 

 <da>is published in</da><ra>is the year of publication of</ra> 

</node> 

<node><id>IDJournal</id> 

 <desc>Journal</desc> 

 <da>is published by</da><ra>is the publisher of</ra> 

</node> 

<node><id>IDAuthor1</id>  

 <desc>C. Bussler</desc> 

</node> 

<node><id>IDTitle1</id>  

 <desc>Enterprise-Wide Workflow Management</desc> 

</node> 

<node><id>IDYear1</id> 

 <desc>1999</desc> 

</node> 

<node><id>IDJournal1</id> 

 <desc>IEEE Concurrency</desc> 

</node> 

<node><id>IDArticle1</id>  

 <desc>Article1</desc> 

</node> 

<node><id>IDArticle1R1</id> 

 <src>IDArticle1</src><asc>IDTitle</asc><dst>IDTitle1</dst> 

</node> 

<node><id>IDArticle1R2</id> 
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 <src>IDArticle1</src><asc>IDAuthor</asc><dst>IDAuthor1</dst> 

</node> 

<node><id>IDArticle1R3</id> 

 <src>IDArticle1</src><asc>IDYear</asc><dst>IDYear1</dst> 

</node> 

<node><id>IDArticle1R4</id> 

 <src>IDArticle1</src><asc>IDJournal</asc><dst>IDJournal1</dst> 

</node> 

<node><id>IDArticle2</id>  

 <desc>Article2</desc> 

</node> 

<node><id>IDAuthor2a</id> 

 <desc>S. Choenni</desc> 

</node> 

<node><id>IDAuthor2b</id>  

 <desc>R. Bakker</desc> 

</node> 

<node><id>IDTitle2</id>  

 <desc>On the Evaluation of Workflow Systems in Business Processes</desc> 

</node> 

<node><id>IDYear2</id> 

 <desc>2003</desc> 

</node> 

<node><id>IDJournal2</id> 

 <desc>Electronic Journal of Information Systems Evaluation</desc> 

</node> 

<node><id>IDArticle2R1</id> 

 <src>IDArticle2</src><asc>IDTitle</asc><dst>IDTitle2</dst>  

</node> 

<node><id>IDArticle2R2</id> 

 <src>IDArticle2</src><asc>IDAuthor</asc> 

 <dst>IDAuthor2a</dst> 

</node> 

<node><id>IDArticle2R3</id> 

 <src>IDArticle2</src><asc>IDAuthor</asc> 

 <dst>IDAuthor2b</dst> 

</node> 

<node><id>IDArticle2R5</id> 
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 <src>IDArticle2</src><asc>IDJournal</asc><dst>IDJournal2</dst> 

</node> 

<node><id>IDArticle2R4</id> 

 <src>IDArticle2</src><asc>IDYear</asc><dst>IDYear2</dst> 

</node> 

<node><id>IDArticle3</id>  

 <desc>Article3</desc> 

</node> 

<node><id>IDYear3</id> 

 <desc>2006</desc> 

</ node> 

<node><id>IDTitle3</id>  

 <desc>Searching for e-Business Performance Measurement Systems</desc> 

</node> 

<node><id>IDArticle3R1</id> 

 <src>IDArticle3</src><asc>IDTitle</asc><dst>IDTitle3</dst> 

</node> 

<node><id>IDArticle3R2</id> 

 <src>IDArticle3</src><asc>IDJournal</asc><dst>IDJournal2</dst> 

</node> 

<node><id>IDArticle3R3</id> 

 <src>IDArticle3</src><asc>IDYear</asc><dst>IDYear3</dst> 

</node> 

</TRM>  

 

4.4 Discussion 

After introducing the TRM-DB, it is necessary to notice that XML and tables may be 

viewed as òmechanicsó of expressing the information modelled in the TRM. The TRM-DB 

in the data model layer uses the TRM as the foundation layer and the TRM-XML or the 

TRM-Table as data storage layer. The point that makes the TRM-DB special is that unlike 

other related works in the data model layer, this database is directly based on the TRM. For 

example, ZigZag is also an information layer based on the Static-TRM, but it doesnõt use 

all of what the TRM can provide.  

The TRM-DB can be theoretically used to describe many structured or unstructured real-

world information with integration of schema in the database. This characteristic is based 

on describing all information, whether data or metadata with the same method and in a 
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same context. The main issue is that there is a single, simple and global schema which is 

not dedicated to any particular database.   

As a comparison between the studied data models, the TRM-DB has disadvantages and 

advantages over RDB, XML and Zzstructure, which have been summarized in Table  4-1. 

Table  4-1: Comparison of features the studied data models 

 RDB XML Zzstructure TRM-DB 

Meta-data Separated Joint No or Mixed No or Mixed 

One-to-many 

relationship 

Yes Yes by 

repetition 

Yes by 

transclusion 

Yes  

Null problem No by 

decomposition 

(if practical) 

No No No for TRM-XML, 

Yes for TRM-Table 

Re-use Yes by 

normalization 

Yes by 

ID/IDREF  

Built-in Built-in 

Hierarchy Yes Yes No No 

Bi-

directionality 

No No No Yes 

Relative 

required 

storage space 

Low High High High 

 

4.5 Querying the TRM-DB 

Querying the TRM-DB is different in nature from querying other databases like RDBs or 

XML. The difference goes back to the lack of a schema in the TRM-DB. For example, a 

question like òwhat are the titles of the articles published in year 2003ó in RDBs is 

convertible to a SQL statement having òéWHERE year=2003éó. In that statement, a 

part of the schema (òyearó) is questioned to be equal to a value (ò2003ó). Similarly in XML, 

an element called òyearó may be examined to be equal to that value in an XQuery 

statement.  



- 85 - 

In the TRM-DB by contrast, some strings like òyearó are parts of data, like any other data 

like ò2003ó. The only questionable things in SQL or XQuery are id, da, ra, src, asc and dst, 

so a mapping method between these two kinds of queries must be developed. In this 

section, the mapping method is described through two examples for the TRM-Table and 

the TRM-XML. The used database is the example of bibliographic data of section  2.1.2. 

4.5.1 Querying the TRM-Table 

The equivalent TRM-Table (called òNodesó) has been shown in Figure  4-6. For querying 

the TRM-table, first a view is designed called RelationTriples, as follows: 

CREATE VIEW RelationTriples 

SELECT Nodes_1.desc AS src, Nodes_2.desc AS asc, Nodes_3.desc AS dst 

FROM ((Nodes  

INNER JOIN Nodes AS Nodes_1 ON Nodes.src=Nodes_1.ID)  

INNER JOIN Nodes AS Nodes_2 ON Nodes.asc=Nodes_2.ID)  

INNER JOIN Nodes AS Nodes_3 ON Nodes.dst=Nodes_3.ID; 

ORDER BY src; 

 

This view provides two features, first it filters the database with the records which have 

completed triples of src, asc and dst (means relations only), secondly it shows the TRM 

representation between real pieces of data, not between their identifiers. This view may 

contain redundancies, but not any null. The sample output is shown in Figure  4-9. 

 

Figure  4-9: The view of "RelationTriples" applied on the sample database 
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Then RelationTriples view can be used for applying queries through some stages. For 

example, to query òwhat are the titles of the articles with year=2003ó, first one must filter 

on (asc=óYearó AND dst=ó2003ó) to find src as òArticle2ó, then another filter must be 

(src=óArticle1ó AND asc=ótitleó) to find dst as òOn the Evaluation of éó. This can be 

done in SQL using a single statement like: 

SELECT RelationTriples_2.dst 

FROM RelationTriples AS RelationTriples_1  

INNER JOIN RelationTriples AS RelationTriples_2  

ON RelationTriples_1.src = RelationTriples_2.src 

WHERE RelationTriples_1.asc="year"  

AND RelationTriples_1.dst="2003"  

AND RelationTriples_2.asc="title"; 

 

The above statement relates RelationTriples to itself, with aliases òRelationTriples_1ó and 

òRelationTriples_2ó. Then the condition òRelationTriples_1.asc=year AND 

RelationTriples_1.dst=2003ó will filter the records to the wanted relations, with their src 

referring to the wanted articles. For the wanted articles, their titles are required. The 

relations that can tell us the titles are those with òtitleó in their asc field. Thus in 

RelationTriples_2 a relation with asc=title and src={what is already found} is required. 

Also RelationTriples_2 has been already filtered on its src (because it joins to 

RelationTriples_1 by common srcõs). 

The result of running the query is shown in Figure  4-10. 

4.5.1.1 Rebuilding the Relational Database 

If a database is designed in the TRM-Table, it can be used to build the equivalent relational 

database. An SQL statement can use the designed òRelationTriplesó view, and give a full 

non-normalized version of the database, i.e. a big table with all the possible columns. The 

 

Figure  4-10: The sample output of querying the TRM-Table 
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required SQL statement uses TRANSFORM and PIVOT keyword to convert data from 

cells to the headers of the columns, as follows: 

TRANSFORM First(RelationTriples.dst) AS FirstOfdsc 

SELECT RelationTriples.src AS Article 

FROM RelationTriples 

GROUP BY RelationTriples.src, RelationTriples.dst 

PIVOT RelationTriples.asc; 

 

The result is like Figure  4-11. 

The resulted table implicitly shows the binary decomposed version of the relational 

database. Unlike normal progress, now it can be used to òcomposeó the required relations. 

As the first step, one can remove null values and end up with individual binary tables (but 

with possible redundancies) by querying the above SQL statement for some specific asc. 

For example, the following statement will give the result of Figure  4-12 

 

 

 

 

 

Figure  4-11: The sample result of converting the TRM-Table to full non-normalized table 
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TRANSFORM First (RelationTriples.dst) AS FirstOfdsc 

SELECT RelationTriples.src AS Article 

FROM RelationTriples 

WHERE RelationTriples.asc="journal" 

GROUP BY RelationTriples.src, RelationTriples.dst 

PIVOT RelationTriples.asc; 

Finally if identifiers are used, the result is a non-redundant set of the fully-decomposed 

tables. 

4.5.2 Querying the TRM-XML  

XQuery is a language developed for querying XML databases. It has almost the same role 

for XML as SQL has for RDBs. XQuery is the recommended query language for XML by 

W3C (http://www.w3.org) and has the potential to be one of the most important query 

languages [48]. However, XQuery is not yet supported in any Web browser at the time of 

writing this thesis. Rather, there are many implementations of it in terms of applications, 

plug-ins or as a part of some database engines. More about the syntax of XQuery is outside 

the scope of this thesis and the full documentations can be found on W3C website 

(http://www.w3.org). 

XQuery can be used as a query language for the TRM-DB because it can query the TRM-

XML. The way XQuery is used for querying the TRM-XML is again naturally different 

from the way it is used to query any other XML file. Here XQuery can only question about 

special elements (id, da, ra, src, asc, dst) and the questions must be mapped to that special 

way of using XQuery. This has been explained in the following example. 

Recalling the bibliographic example and the equivalent TRM-XML listing shown in section 

 4.3.3, let us suppose the query is again to find òWhat are the titles of the articles published 

in year 2003ó. The required XQuery is shown and explained in Figure  4-13. 

 

Figure  4-12: A binary redundant table produced by transforming the TRM-Table 
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4.6 Summary 

In this chapter, the TRM-DB has been introduced as a method of data structuring within a 

schemaless framework. It  is an approach of structuring information directly on top of 

Static-TRM layer. Two implementations are proposed to make the TRM-DB feasible: The 

TRM-Table which uses a single table to store the entire database, and the TRM-XML 

which uses XML as a language of serializing the TRM nodes. 

Before introducing the TRM-DB, the graphical notation of the TRM has been shown to be 

able to express RDBs, ZigZag and XML. Finally the methods of querying the TRM-DB 

are provided, having two implementations: Using SQL for the TRM-Table and XQuery for 

the TRM-XML. 

 

Figure  4-13: Description of a sample the TRM query statement in XQuery. 
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C h a p t e r  5-  

5 TRM-NAV: A NEW HYPERTEXT NAVI GATION MODEL  

 

 

 

 

 

 

Recalling from section  2.4, while classic hypertext models (like the Dexter Model [92])  

define a link as a two-element object consisting source and destination, ôassociationõ has 

sometimes been considered as the third element, varying from implicit to explicit 

involvement. Such three-element links has been called òTernary-Linksó (as an extension to 

the binary links of the BRM [19]) hereafter.  

This chapter explains a TRM-based navigation model of hypertext, called òTRM-NAVó. 

Like the previous chapters, this model has a unifying approach and tries to make a general 

framework to cover all implicit and explicit approaches to the concept of the Ternary 

Links. 

5.1 Background 

When the BRM [19] was introduced in chapter  2, a ternary approach to the BRM in section 

 2.5.2 showed the limitations of the BRM in modelling the navigation in a class of hypertext 

systems called òknowledge-oriented hypertextó.  The BRM focused on the four main 

navigational questions (Is this node a link source? Where can I go from this source? Is this 

node a link destination? What nodes are linked to this destination?). However, it represents 

explicitly nothing else, such as the semantics or types or meaning of links. The extra 

information about a binary link may be implicitly presented in the implementation. For 

example, inspection of a set of links or of a process generating links may indicate its 

purpose; however, this is not expressed explicitly in the model.  




